
c

EOS: A Project to Investigate the Design and Construction of
Real-Time Distributed Embedded Operating Systems. *

(hASA-CR-18G971) EOS: A PbCJECZ 10 187-26577
I N V E S T I G A T E TEE CESIGI AND CCES!I&CCIXOti OF
GEBL-1IIBE D I S Z E I E O T E O E W B E E C I C C E E R A T I N 6
SPSTEI!!S Bid-Year lieport, 1 Q E 7 (Illinois Unclas
Gniv.) 246 p A v a i l : A l I S BC All/!!P A01 63/62 00362E8

Principal Investigator: R. H. Campbell.

Research Assistants:
Ray B. Essick,
Gary Johnston,
Kevin Kenny,
Vince Russo.

Software Systems Research Group

University of Illinois at Urbana-Champaign
Department of Computer Science

1304 West Springfield Avenue
Urbana, Illinois 61801-2987

(217) 333-0215

p

i

TABLE OF CONTENTS

1. Introduction. ... 1
2. Choices .. 1
3. CLASP .. 2
4. Path Pascal Release ... 4
5. The Choices Interface Compiler .. 4
8. Summary ... 5

ABSTRACT:

Project EOS is studying the problems of building adaptable real-time
embedded operating systems for the scientific missions of NASA. Choices, a Class
Hierarchical Open Interface for Custom Embedded Systems, is an operating sys-
tem designed and built by Project EOS to address the following specific issues:
the software architecture for adaptable embedded parallel operating sys-
tems, the achievement of high-performance and real-time operation, the
simplification of interprocess communications, the isolation of operating
system mechanisms from one another, and the separation of mechanisms
from policy decisions. Choices is written in C++ and runs on a ten processor
Encore Multimax. The system is intended for use in constructing specialized
computer applications and research on advanced operating system features
including fault-tolerance and parallelism.

One of the applications made possible by our research is a software system
that allows workstation applications to be closely integrated with software run-
ning on specialized computers like a supercomputer or supermini. CLASP is a
mechanism that allows the virtual memory space of a workstation to be
shared with a high-performance computer. CLASP implements a cross-
architecture procedure call that allows an application on a workstation tran-
sparently to invoke procedures on the high-performance machine. The method
allows existing software packages to be decomposed without change onto a
compatible workstation supercomputer or supermini computer pair. Ray Essick’s
Ph.D. thesis documents this work.

Project EOS: Mid-Year Report 1

1. Introduction.
Project EOS is investigating the design and construction of embedded real-time

systems for applications in NASA’s aerospace programs. The results of our study in pre-
vious years is documented in the bibliography in Appendix A. In the first six months of
the current grant period, we built a prototype adaptable embedded real-time operating
system for parallel computers called Choices, designed and built CLASP, a mechanism
that uses virtual memory to implement a flexible remote procedure call, and, to satisfy
several requests for previous Project EOS work, created a new release of the Path Pascal
compiler for Berkeley UNIXm BSD 4.3. An interface compiler for Choices has been
designed, but is not yet implemented.

2. Choices
Choices is an experimental real-time embedded operating system for parallel and

distributed computer systems in aerospace applications. The initial prototype has been
built on a ten processor Encore Multimax. The system is designed to support:
0

0

0

the objectoriented organization of user applications,
applications requiring custom designed operating systems,
diverse hardware architectures (both networked computers and shared memory
multiprocessors),
parallel computation where performance is an issue, 0

0 persistent objects,
0 protection,
0 real-time operation of applications,
0

is organized to meet a number of objectives:
0

0

research and applications requiring specialized operating system functions.
The design of the operating system reflects an objectcoriented approach. The code

The software is to be placed in the public domain.
The software is organized as a hierarchy of classes written in C++. C++ is imple-
mented, currently, as a preprocessor for C.
Classes separate operating system mechanism from policy and allow reuse of
modules.
The classes used in Choices may be specialized or modified to create new operating
system features without jeopardizing the architectural integrity of the system and

0

0

UNM is a Registered Trademark of AT&T.

Project EOS: Mid-Year Report

should encourage advanced operating system research.
The systems programming language C++ has not been extended or modified; all
process, exception and communication mechanisms are written using classes. This
encourages portability.
Hardware and application specific features are encapsulated in classes and separated
from device independent and application independent code.
Many operating system services execute in application space, reducing the size of
the Choices kernel.
The system and its applications use UNM loader formats and can be built under
UMX.
The system is intended to support future investigations of real-time software organ-

ization, fault-tolerance, networked computers, and load balancing. Much of the design
of Choices can be translated into Adam or other non object-oriented languages. This
would permit “high-quality production” implementations of the code. However, for the
purposes of this research, C++ has been excellent. The subclassing and generic func-
tions of C + t have many advantages in prototyping and maintaining code consistency.
C++ produces good, fast code, it aids and speeds recompiling and software reuse, and it
has been ported to a large number of machines. It is available at a minimal cost for a
license to research organizations. The source of the compiler, linkers, and other utilities
are available. At this point in time, C++ has many advantages for our experimental
operating system work.

Choices is discussed further in Appendix B. The prototype code for Choices (as of
May 21, 1987) can be found in Appendix C.

3. CLASP
CLASP, provides a new implementation of the traditional process model. It allows

portions of the process to execute on the most appropriate processor architecture.
CLASP isolates a practical level of homogeneity necessary to implement this sharing; it
also mitigates dissimilarities between the processor architectures - such as register sets
and stack frame formats.

CLASP makes the address space of a single process available to heterogeneous
CPUs with potentially different instruction sets and performance characteristics. Where
other approaches have concentrated on enhancing addressing to include the concept of
remote addresses, CLASP makes a single address space accessible to multiple heterogene-
ous CPUs. A novel aspect of the CLASP architecture is the inclusion of instructions for
different processor architectures within the same address space. The CLASP system
introduces a new construct, the Cross Architecture Procedure Call, to transfer a
process’s control thread between CPUs. The Cross Architecture Procedure Call - or

Ada is a Registered Trademark of the Department of Defense.

Project EOS: Mid-Year Report 3

CAPC - uses each CPU's subroutine call and return instructions to implement control
transfers between CPUs. This control transfer mechanism and the shared address space
make CAPCs more transparent than Remote Procedure Calls (RPCs), which require spe-
cial stub routines and system. calls to implement control transfers between CPUs.

To use the CLASP architecture, a special CLASP loader links separately compiled
routines. The CLASP loader recognizes the different object formats for various proces-
sor architectures and resolves the cross-architecture references. It provides the operating
system kernel with the information necessary to detect control transfers (e.g., procedure
and function calls) that cross architecture boundaries. Routines to execute on specific
architectures are compiled for those architectures. Some frequently called routines (e.g.,
sqrt()) are replicated. Duplicate copies of these routines, each compiled for a different
architecture, are loaded into the executable file. Calls to any of these routines can be
directed to the local instance of that routine, saving the network overhead of a remote
call. This replication is a loader operation.

CLASP subroutine libraries may contain routines for several architectures. Specific
routines within a library can be compiled for the most appropriate processor architec-
tures. A library of subroutines to manipulate large arrays may contain code for several
architectures; for example, routines that manipulate the array may be compiled for high
performance vector architectures, such as that provided by the Convex C-1. Other rou-
tines in the library, which do not perform large calculations, may be compiled for the
workstation architecture.'

Trees, lists, and other pointer-based data structures are difficult and sometimes
impractical to implement in distributed computing models without a shared address
space. The SUN Remote Procedure Call dereferences pointers to pass individual ele-
ments of a pointer-based structure. Pointer dereferencing is adequate for situations
where single structures are passed by pointer instead of value. Nelson advocates the use
of subroutines to encapsulate access to pointer-based structures. This approach implies
changing (or deliberately designing) the applications program to encapsulate accesses to
these structures. The CLASP software architecture addresses this problem by ensuring
that the context for a pointer (i.e., its address space) is in effect on the remote processor.
Applications may use pointers as handles to objects and for true pointer-based struc-
tures without concern about where a procedure is implemented.

Many RPC implementations package the entire argument list and send it to the
remote host. Datagram based RPC implementations send the entire argument list to the
server in a single packet. Therefore, the argument list must be small enough to fit into a
single packet. Some implementations provide larger argument lists by supporting
stream based connections. CLASP supports arbitrary sized argument lists. CLASP uses

These routines also might be compiled for both client and server architectures. Calls to the replicab
ed routine can be directed to the local instance of that routine and avoid the overhead of a network tran-
saction. As was pointed out in the above paragraph, the loader performs this replication and resolves
references to send most calls to that routine to a local instance of the routine.

4 Project EOS: Mid-Year Report

demand paging to move arguments and data to the server only on request for access by
the remote procedure. As an example, binary searches through large sorted arrays can
be efficient because only the accessed portions of the array are transferred to the remote
processor. Pages, once transferred to the server, remain on the server until they are
required by the client processor. By leaving the pages on the server, most data eventu-
ally becomes local to a particular computer system. Pages used only by the client
remain on the client; pages used only by the server will be transferred to and remain on
the server. Pages of data used by both processors will migrate between hosts as needed.

Although CLASP appears to be an approach to distributed computing, it is actually
an extension of the traditional single-system model onto a new underlying implementa-
tion for greater performance and ease of use. CLASP mimics a single processor model
but allows the most appropriate CPU to process appropriate parts of the problem. The
application program is neither restructured nor recompiled. The choice of which proces-
sor performs a specific routine affects only the processing rate for that procedure. The
choice does not alter the semantics for that procedure nor its interactions with other
procedures in the address space.

CLASP has been implemented between SUN 3 systems under UNIX. In the next
year, CLASP will be implemented in Choices. Appendix D contains Ray Essick's Ph.D.
thesis on CLASP which details the work done in the last six months.

4. Path Pascal Release
A new release of Path Pascal for Berkeley UNM BSD 4.3 was made this Spring.

The release was prompted by a number of requests for Path Pascal for SUN worksta-
tions. The new release corrected a number of bugs in the BSD 4.2 version. The new
release of Path Pascal has been used for the operating system class at the University of
Illinois. The new release has been distributed to five sites including the Electrical
Engineering Department at Cornel1 where it was used in a network simulation class.
The new release can be obtained on request from Professor Campbell.

5. The Choices Interface Compiler
In Choices, there are a large number of operations that may be conceived of as

being wrapped around user-described operations. For example, a call to a persistent
object involves remapping the address space as part of the call and (possibly) again as
part of the return. Parameter transmission across this interface in some cases (for exam-
ple, when the object is remote) is not straightforward.

There are many other examples of this type of "wrapped" interface. The implemen-
tor of an object may well want to impose a synchronization discipline upon its callers, as
in the Open Path Expressions used with Path Pascal. This is also best described as
actions to be taken before and after executing the called procedure; in this case, the
actions are the appropriate operations on synchronization objects (such as semaphores or
events).

Project EOS: Mid-Year Report 6

A remote procedure call is a more complex example of the same sort of "wrapped"
interface. The action that takes place before a call is to prepare a description of the
called procedure and the parameters for transmission to the server; the action on return
is to get the description of return value and result parameters from the server and for-
mat them correctly for the caller again. The server's logic to handle the specific remote
procedure call is also a "wrapped" interface with a similar flavor.

There are many other examples, such as preserving atomicity, journalization of
input and output letters in a transaction processing system, and establishing commit-
ment points in a database manager, that are all examples of "wrapped" interfaces. The
common factors for all of these are:

1 The procedure to be executed consists of taking some action, eventually cal-
ling another procedure with the same calling sequence os the first, and then
taking some other action before returning.
The procedure can be generated from a knowledge of its calling sequence,
without needing to be adapted to the specific application. For example, all
calls to an operating system kernel can be translated to the corresponding
trap operations without knowledge of the function of any particular call.

If both of these requirements are met, the procedure is a candidate for interfuce

2

compiling.

The Interface Compiler

The interface compiler is a program that has, as input, a description of the object
or objects to be adapted (a C++ #Include file), and a description of how to generate
the type of interface required (kernel calls, remote procedure calls, or whatever). It pro-
duces any number of source files as output; these files give the code needed to implement
the interface. Multiple source files are often required because the interface may need to
be compiled into multiple object modules; for instance, the server and client ends of a
remote procedure call.

6. Summary
Based on our prior research and in cooperation with Ed Foudriat, Project EOS has

built Choices, a prototype experimental embedded real-time system for parallel and net-
work computer architectures. The system has been implemented on a 10 node Encore
Multimax. The organization of the software is novel and demonstrates that operating
systems can be constructed using an object-oriented methodology. The current system
includes parallel execution of Threads on the Multimax, implementation of Spaces, and
handling of exceptions and interrupts. Future work will extend this operating system
with servers, real-time features, and networking.

Many of the networking aspects of Choices has been prototyped in the CLASP sys-
tem. This architecture and software system allows a virtual memory to be shared
between several processors. An implementation of CLASP was built for the SUN 3

6 Project EOS: Mid-Year Report

workstation. I
1
i
I
m
1
I
a
1
b
1
a
I
8
E
1
I
I

A new release of Path Pascal was created for Berkeley UNIX BSD 4.3 because of
popular demand.

Finally, progress is being made in the design and development of a Choices inter-
face compiler that will aid the construction of network servers, debugging tools, and
other utilities and services.

APPENDIX A

Project EOS Bibliography

Project Eos Bibliography

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

Campbell, R. H., K. Horton, and G. G. Belford, Simulations of a Fault-Tolerant
Deadline Mechanism, Digest of Papers FTCS-9: Ninth Annual International
Symposium on Fault-Tolerant Computing, Madison WI, June, 1979, 95-102.

Campbell, R. H. and R. B. Kolstad, Path Ezpressions in Pascal, Proceedings of
the Fourth International Conference on Software Engineering, Munich,
September 17-19, 1979, 212-219.

Campbell, R. H. and R. B. Kolstad, Practical Applications of Path Ezpressions to
Systems Programming, ACM79, Detroit, 1979, 81-87.

Campbell, R. H. and R. B. Kolstad, A n Overview of Path Pascal’s Design, Sigplan
Notices, Vol. 15, No. 9, pp. 13-14, September, 1980.

Kolstad, R. B. and R. H. Campbell, Path Pascal User Manual, Sigplan Notices,
Vol. 15, No. 9, pp. 15-24, September, 1980.

Kolstad, R. B. and R. H. Campbell, Directions for User Defined Communication for
Distributed Software, Proceedings of The International Conference on Paral-
lel Processing, IEEE 80CH1569-3, pp. 188-189, Boyne MI, August 26-29, 1980.

Wei, A. Y., K. Hiraishi, R. Cheng, R. H. Campbell, Application of the Fuult-
Tolerant Deadline Mechanism t o a Satellite On-Board Computer System, Digest of
Papers FTCS-10: Tenth International Symposium on Fault-Tolerant
Computing, Kyoto Japan, October 1980.

Kolstad, Robert Bruce. “Distributed Path Pascal: A Language for Programming
Coupled Systems,” Ph.D. Thesis, Department of Computer Science Technical
Report #1136, University of Illinois at Urbana-Champaign, Urbana, Illinois, 1983.

Liestman, A. and R. H. Campbell, A Fault Tolerant Scheduling Problem, Digest of
Papers FTCS-13: Thirteenth Annual International Symposium on
Fault-Tolerant Computing, Milano Italy, June 1983.

Schmidt, George Joseph. “The Recoverable Object as a Means of Software Fault
Tolerance,’’ MS Thesis, Department of Computer Science, University of Illinois at
Urbana-Champaign, Urbana, Illinois, 1983.

Campbell, R. H., Distributed Path Pascal, In Distributed Computing Systems,
(Editor Y. Paker and J.-P. Verjus), Academic Press, 1983, pp. 191-224.

Campbell, R. H. and T. Anderson, Practical Fault Tolerant Software for Asynchro-
nous Systems, SAF’ECOMP 83, Third International WAC Workshop on
Achieving Safe Real-time Computer Systems, Pergamon Press, Oxford, Eng-
land, 1983.

Jalote, Pankaj and Roy H. Campbell, “Fault Tolerance Using Communicating
Sequential Processes,” In: Digest of Papers, Fourteenth International Conference on
Fault Tolerant Computing, IEEE FTCSl4 (June 1984) pp. 347-352.

2

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Project EOS: Bibliography

Raymond B. Essick, Judith Grass, Dirk
A. McNabb. “The Embedded Operating Sys-

Campbell, Roy H., Jeff Donnelly,
Grunwald, Pankaj Jalote and David
tem Project,” 1984 Mid-Year Report, NASA GRANT NSG 1471, Software Systems
Research Group, Department of Computer Science, University of Illinois a t
Urbana-Champaign, Urbana, Illinois, 1984.
McKendry, M. S., and R. H. Campbell, A Mechanism for Implementing Language
Support in High-Level Languages, Transactions on Software Engineering, Vol.
SE-10, No. 3, May 1984, pp.227-236.
Mickunas, M. D., Pankaj Jalote and Roy H. Campbell. “The Delay/Re-Read proto-
col for Concurrency Control,” In: Proceedings, First International Conference on
Data Engineering. IEEE, Los Angles, California, 1984.
Jalote P. and R. H. Campbell, “Atomic Actions in Concurrent Systems,” Proceed-
ings of the 5th International Conference on Distributed Computing Systems, Denver,
May 1985.
Grunwald, D. C., “An Implementation of Path Pascal,” MS Thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois,
1985.
Jalote P., “Atomic Actions in Concurrent Systems,’’ Ph.D. Thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois,
1985.
Campbell, Roy H., Raymond B. Essick, Judith Grass, Dirk Grunwald, Pankaj
Jalote, Kevin Kenny and David A. McNabb. “The Embedded Operating System
Project,” 1985 Mid-Year Report, NASA Grant NSG 1471, Software Systems
Research Group, Department of Computer Science, University of Illinois a t
Urbana-Champaign, Urbana, Illinois, 1985.
Jalote P. and R. H. Campbell, Atomic Actions for Fault-Tolerance using CSP,
IEEE Transactions on Software Engineering, Special Issue on Software
Reliability - Part II, Vol. SE-12, No. l., January 1986.
Grass, J. E., Mediators, Ph.D. Thesis, Technical Report, UTUCDCS-R-86-1266,
1986.
Grass, J. E. and R. H. Campbell, Mediators: A Synchronization Mechanism, Proc.
of Sixth International Distributed Computing Systems, IEEE, Cambridge,
Mass., May 19-23, 1986, pp. 468-477.
Campbell R. H. and B. Randell, Error Recovery in Asynchronous Systems,
IEEE Transactions on Software Engineering, August, 1986.
Liestman, A. and R. H. Campbell, A Fault Tolerant Scheduling Problem, IEEE
Transactions on Software Engineering, November 1986.
V. RUSSO, LINK, M.S. Thesis, Technical Report, Department of Computer Science,
University of Illinois, Urbana, IL 61801, 1987.

Project EOS: Bibliography 3

26. Essick, R. B., The Cross Architecture Procedure Call, Ph.D. Thesis, Technical
Report UIUCDCS-R-87-1340, Department of Computer Science, University of Illi-
nois, Urbana, May 1987.

27. Campbell, R. H., G. Johnston and V. RUSSO, Choice, Technical Report, University
of Illinois, Urbana, May 1987.

APPENDIX B

Choices

Roy Campbell, Gary Johnston, Vincent Russo

Choices
(Class Hierarchical Open Interface for Custom Embedded Systems')

Roy Campbell, Gary Johnston, Vincent Russo

University of Illinois at Urbana-Champaign
Department of Computer Science, 1304 W. Springfield Ave., Urbana, IL 61801-2987

1. Introduction
This paper describes the design for an operating system family called Choices being built for

the Embedded Operating System (EOS) project at the University of Illinois at Urbana-
Champaign. Choices embodies the notion of customized operating systems that are tailored for
particular hardware configurations and for particular applications. Within one large computing
system, many different specialized application servers may be integrated to form a general pur-
pose computing environment. We have implemented a Choices Kernel on an Encore Multimax.

Choices, a Class Hierarchical Open Interface for Custom Embedded Systems, provides a
foundation upon which to construct sophisticated scientific and experimental software. Unlike
more conventional operating systems, Choices is intended to exploit very large multi-processors
interconnected by shared memory or high-speed networks. Uses include applications where
high-performance is essential like data reduction or real-time control. It provides a set of
software classes that may be used to build specialized software components for particular appli-
cations. Choices uses a class hierarchy and inheritance to represent the notion of a family of
operating systems and to allow the proper abstraction for deriving and building new instances of
a Choices system. At the basis of the class hierarchy are multiprocessing and communication
objects that unite diverse specialized instances of the operating system in particular computing
environments.

The operating system was developed as a result of studying the problems of building adap-
tive real-time embedded operating systems for the scientific missions of NASA. Major design
objectives are to facilitate the construction of specialized computer systems, to allow the study of
advanced operating system features, and to support parallelism on shared memory and
networked multiprocessor machines. Example specialized computer systems include support for
robotics applications, network controllers, aerospace applications, high-performance numerical
computations, parallel language processor servers for IFP[131, Prolog, Smalltalk, and
reconfigurable systems. Examples of advanced operating system features include fault-tolerance
in asynchronous systems, real-time faulttolerant features, load balancing and coordination of
very large numbers of processes, atomic transactions and protection. Example hardware archi-
tectures include shared memory multiprocessors like the Encore Multimax and networked com-
puters like the Intel Hypercube.

Choices was designed to address the following specific issues: the software architecture for
parallel operating systems; the achievement of high-performance and real-time operation; the
simplification and improved performance of interprocess communications; the isolation of
mechanisms from one another and the separation of mechanisms from policy decisions.

Thir work waa rupported in part by NASA undu grant no. NSG1471 and by AT&T METRONET.

,

Of particular concern during the development of the system, was whether the class
hierarchical approach would support the construction of entire operating systems. C++ was
chosen because it supported classes while imposing negligible performance overhead at run-time.
In particular, we decided to construct all parallel and. synchronization features using C++ classes
rather than by introducing new language primitives. Thus Choices is also a study of the ade-
quacy of class hierarchies to abstract and support parallelism and other operating system con-
cepts and to allow specializations of classes that facilitate efficient support for applications.

Fortunately for the designers of Choices, there has been a lot of operating system develop-
ment that is directly applicable to our goals. However, this development work often produced
implementations buried within the bowels of large, successful operating systems. Abstracting the
ideas from many different systems and reorganizing them into Choices has been a major concern
of our design team.

Choices has been influenced considerably by UNIXm and MULTICS. Indeed, many of the
standard UNIX system compilers, linkers and utility programs have been used to produce the
Choices software. However, to structure Choices to allow multiple processes running simultane-
ously on a multiprocessor with a high degree of parallelism and communication, we have had to
abandon the UNIX organization of the kernel. Similarly, the UNIX process supports the sequen-
tial execution of a program running within its own address space. To support real-time and
high-performance applications, we have opted for a lightweight process. Multiple lightweight
processes can run on multiple processors within the same virtual address space. Communication
performance in U N K is limited by coroutining within the kernel and by copying information into
and out of user space. In Choices, we have attempted to eliminate these bottlenecks.

The open architecture of Choices is influenced by the ideas used to build CEDAR [IS]. The
notion of a lightweight process is very similar in Choices and CEDAR, although in Choices i t is
provided through a class abstraction and is not built into the systems language. The Choices
notion of a lightweight process may be specialized through the subclassing mechanism and this is
used in the software to distinguish user and system processes. Choices permits a virtual address
space to be shared by multiple processors. It offers concurrent applications protection from one
another and hence is, in CEDAR terminology, a closed operating system. However, user created
operating system policies and mechanisms (like a file system) are provided by the open interface
of Choices that is supported through the notion of persistent objects. CEDAR is not completely
built as an objectoriented system although the MESA language is oriented towards encapsulated
data structures which influences the organization of the system.

Many current operating system designs address the problem of distributed computing.
Choices owes several of these systems many of its ideas, but the support of applications on paral-
lel processors has caused us to implement these ideas in different ways. Many
distributed/multiprocessor UNIXS (UNIX United [3], LOCUS [lo], Mach [l], RFS [13], RIDE [9],
NFS [18], Encore Multimax UNIX (W) [7], Sequent Balance 8000 UNIX [14]) still impose
UNIX limitations on the parallelism and performance of applications. Multiprogramming on a
cached multiprocessor can have undesirable side effects in the form of additional caching and
cache flushing overhead. Message-oriented kernels like the V System kernel [6], Accent, Amoeba
[17], and Micros [19] build specific communication schemes into the lowest structures in the ker-
nel, restricting the possibilities of specializing kernel features to take advantage of communica-
tion patterns of the application or communication mechanisms of the hardware. For example,

UNM ir a Registered Trademark of AT$T.

2

systems implement a few ways of providing “virtual” messages like “fetch on access.” However,
these systems are not easy to adapt to support other approaches like “send on write”, “send on
execute”, and “remote procedure call on execute.” Many systems suffer overhead from copying
messages into and out of virtual memory. Cached systems may pay a double overhead.

Real-time interrupts and global multiprocessor interrupts pose organizational problems in
traditional operating system architectures like UNM. Most operating systems do not include
parallel programming primitives (for example, the parallel creation of parallel processes), nor can
they be built easily out of the primitives that exist in such systems. Error recovery is difficult to
provide in current operating system architectures when used for parallel processing without res-
tricting parallelism because atomicity constraints cannot be imposed easily.

The Clouds operating system [2] includes many concepts that have been useful in developing
Choices. In particular, its notion of a user process accessing a user object is similar to processes
accessing persistent objects in Choices. Choices differs in not supplying a kernel level atomic
transaction.

One of the go& of Choices is to permit the custom design of operating systems for specific
hardware and applications. General purpose operating systems employ delayed bindings within
their architectures to provide flexibility. Examples include communication schemes, file systems
and additional kernel code to handle different architectures and configurations. Choices, on the
other hand, is aimed at providing the smallest operating system that will support a particulh
application on a particular hardware. Where several applications need to coexist within the same
computing system, Choices allows these applications to each run on their own custom-built
Choices operating system. Any communication required between the applications is supported
by common Choices primitives and shared persistent objects.

The design of Choices is based upon several assumptions:
Embedded, real-time, and server computing services will be provided by large numbers of
fast processors connected together by shared memory or by a fast network.
A computational facility is multitasked (it supports several concurrent applications), where
each task may use multiple processors.
Processes in an application have a high degree of communication.
Each application may need to intercommunicate with other applications. Applications com-
municate lesa frequently than lightweight processes within a particular application.
Communication overheads are small but significant.
Even though hardware technology will provide large multiprocessors with very fast proces-
sors, performance of the applications will remain a critical issue.
Small lightweight operating systems are desirable in real-time and high-performance appli-
cations.
Processors within a multiprocessor may be dynamically partitioned to execute different
applications.
Each application may need basic support and specialized support from the operating sys-
tem.
The hardware will support very large virtual address spaces.
Choices is designed to support specialized applications like embedded real-time systems,

numerical programs and specialized computing environments like FP or parallel logic programs.
A Choices system could be embedded as a node within a network of workstations.

8

In the subsequent sections, we discuss the class hierarchical organization of Choices and the
various classes we have built to implement virtual memory, the concept of process, the notion of
a persistent object and exception handling.

2. The Choices Class Hierarchy Model
Several problems emerge when designing an extensible family of operating systems where

each member can be specialized or customized for a particular application or hardware
configuration. Each module within the system may have many different versions tailored for
each different member of the family of operating systems. However, since the different versions
of a module for different machines or applications all perform a similar function, large portions of
different versions of a module will be identical. Customizing an operating system for a new
application requires access to particular aspects of the code that may reside in many different
modules.

A class hierarchy provides an ideal solution to these problems. Particular instances of
classes in the hierarchy are chosen and combined to produce a customized operating system for a
specific architecture and application. Class inheritance provides for code re-use and enforcement
of common interfaces. Customization of the operating system for new applications is guided and
aided by the structure induced upon the system by the class hierarchy.

A class hierarchy gives more than ease of customization. It also gives us a conceptual view
of how portions of an operating system interrelate. It is easier to understand and more flexible
than traditional layered approaches to operating system design. A class hierarchy allows concep-
tual "chunking" of knowledge about portions of a system by learning the function of parent
classes and inferring functionality about subclasses. Traditional layered approaches conceptually
group large sections of functionality into a layer, but the interrelations of the layers are often
complex and poorly understood. Also changing a piece of a layer is in no way facilitated by the
layering. However, in a well designed Class Hierarchical model only the top few classes would
need to be mastered to achieve a good overall view of the system. Class derivation gives a
method to change specific parts without adversely effecting the whole structure.

The Choices support for applications is divided into two portions. The G e r m is a set of
classes that encapsulates the major hardware dependencies of Choices and provides an "ideal-
ized" hardware architecture to the rest of the classes in the hierarchy. It provides the mechan-
isms for managing and maintaining the physical resources of the computer. A K e r n e l is a collec-
tion of classes that supports the execution of applications and implements resource allocation pol-
ic ies using the Germ mechanisms.

Individual customized systems will consist of derived classes from the Germ classes defined
by Choices appropriate for the particular hardware of the system, plus the specifically tailored
Kernel classea the system builder desires. Once this hierarchy is laid down, individual applica-
tions that run on top of the new Kernel can further augment the class hierarchy with their own
classes.

In the following sections, we will describe some of the classes that constitute Choices. The
first set of classes we will discuss provides an abstraction for physical and virtual memory.

3. Stores and Spaces
Stores and Spaces are classes of objects which the Choices Germ provides for memory

management. A Store object encapsulates the management of physical memory. An instance of
a Store manages a range of contiguous physical memory addresses. Operations are provided for

4

Store instantiation, Store destruction, page allocation, and page deallocation. One application of
multiple Store objects is to manage memories with different properties, for example, local
memory, shared memory within a multiprocessor, or global memory shared between multiproces-
sors.

A Space object encapsulates the management of virtual memory. An instance of a Space
manages a range of contiguous virtual memory addresses. Operations are provided for Space
instantiation, Space destruction, allocation and deallocation of page table entries, changing pro-
tection flags on page table entries, mapping a page table entry to a physical page of memory
within a Store, and mapping virtual memory addressing faults on specific page table entries to
appropriate exception handlers (see the section on Exception Handling in Choices.)

Many non-overlapping Spaces may be mapped into the virtual address range of a processor
at any one time. The aggregate of the Spaces addressable in a processors virtual memory is
represented and managed by an instance of the Universe class.

Spaces implement protection of the virtual memory they contain by means of the available
virtual memory hardware protection mechanisms. Protection ensures that a process can only
access a Space according to the access rights it possesses for that Space. A process may have
rights to access a Space as a Primitive Space (in the case that it contains a process stack, code, or
local data) or as a Derived Space containing persistent objects. Primitive Spaces are protected
from invalid read, write, or execute access. A Derived Space can only be accessed by the methods
of the persistent objects that it contains.2 The next section discusses the Choices conceptrof a
process.

4. The Choices Proceas Concept: Threads
Choices is designed to support real-time multiprocessing and parallel computing on large

numbers of processors. The Choices system supports the concept of a computation that is com-
posed of a potentially large number of lightweight parallel processes termed Threads. Each
Thread represents a small independent sequential computation.

Interrupt and red-time processing requires the ability to switch between Threads with a
minimum of context switching overhead. A Thread is implemented with a stack pointer, a pro-
gram counter and a set of register contents. As the Thread executes, it will access its stack, code,
and data from addresses within various Spaces. To accommodate real-time and interrupt pro-
cessing, Spaces may lock their pages to be resident in physical memory. In addition, a Universe
may lock a Space to be resident in virtual memory. A context switch to a Thread that executes
and addresses only resident pages in resident virtual memory requires minimal overhead. Inter-
rupt handlers and real-time processes can be implemented in this manner, if desired. Such
processes may be protected from other applications by setting the memory protection of the
Spaces they access to exclude access in user mode and by running the processes in the supervisor
state of the processor. Most Threads, however, will need to access addresses that are not always
resident in memory or in the Universe. Switching between Threads of this type will usually
involve at least a partial virtual memory context switch.

* A Derived Space is created from a Primitive Space by granting procwed accesr rights to the method8 of the objectr within the
Space. In Choices, such objectr are called persistent because their existence becoma independent of the lifetime of any one process (see
the section on Perristent Objecti.) We emphasize the distinction between a Derived Space and a peraistent object. Uthough a
Derived Space can contain persistent objects, the Space itself i i a Germ object.

5

A real-time application may use multiple communicating Threads to achieve concurrency
and parallelism. A Task is a collection of Threads that have common sets of Spaces to minimize
context switching. Little or no virtual memory context switching or memory cache flushing
should be needed to switch between two Threads in a Task. Kernel scheduling algorithms can
exploit Tasks to achieve high performance. Tasks also provide a framework within which
Thread execution may be prioritized; perhaps to optimize the execution of a parallel processing
user application.

A Space Access List is maintained by the Germ for each Thread. This list specifies the
Spaces a Thread must access in order to execute, as well as the access rights that a Thread has to
those Spaces. The protection specified by the Space Access List is implemented by a combination
of hardware and software. For Primitive Spaces, read, write, and execute protection is provided
directly by the Space through the page table and the paging hardware and memory management
unit. For Derived Spaces, the protection is achieved by providing “gated” procedure calls to the
methods of the objects in the Space. As the Thread invokes a gated call, the call is validated,
and if valid, the Space Access List of the Thread is updated to reflect the protection domain of
the persistent object. On return, the Space Access List is restored to reflect the original protec-
tion domain. The Germ supports efficient operations on the Space Access List that are similar to
the rules in a capability model [15, 201.

Communication can be achieved by means of shared Spaces. Popular shared memory and
message passing communication schemes exist in the system as part of the operating system pro-
vided class hierarchy. Other user defined communication schemes can be built by extending the
class hierarchy. An interface compiler for C++ enriches the possible communication schemes. .
Currently, we have included a Path C++ class (named after Path Pascal [4]), monitors, sema-
phores, messages, and simple varieties of guarded commands.

Protected communication can be achieved by means of shared Derived Spaces containing
persistent objects. The methods of such objects may enforce particular communication protocols
upon the Threads that use them and the protection provided the objects prevents misuse.

Since a Thread may execute in any Space, a persistent object may include a Thread and be
active. Active objects can be used to implement name servers and to send asynchronous mes-
sages. Several persistent system objects augment the shared persistent objects and provide
high-performance communication channels between Threads and between Threads and devices.
System objects are implemented in the Kernel or Germ. They can support stream-based com-
munications, broadcasts, multicasts, and block I/O. Persistent objects are discussed further in
the next section.

5. Persistent Objects
Choices is designed with the objective of placing many operating system and subsystem

components in a protected Space rather than in a kernel as is done in traditional systems. This is
done to reduce the interdependences among operating system components and to increase the
coherence of the components themselves. Such components are implemented as Choices per-
sistent objects. That is, instances of classes that reside in memory for periods that exceed the
execution of a particular Thread and that may be shared between multiple Threads. Persistent
objects may be mapped into the virtual memory of several processors at the same time. In a
sense, the Germ is a collection of persistent objects that are always resident and accessible in the
address space of every processor.

6

A full description of the protection scheme used in Choices is beyond the scope of this short
paper. However, we must introduce enough of the scheme here in order to describe access to and
the invocation of a persistent object. Each Thread executes within a protection domain that dic-
tates what the Thread may access. The protection domain of a Thread is dynamic and may
change by adding or removing Spaces. Initially, the protection domain depends upon the protec-
tion of the executable file that the Thread is created from and the protection domain of the
parent Thread. A Thread that executes a method of a persistent object enters a new protection
domain that depends upon the protection of the Derived Space and the protection domain of the
Thread. When the Thread returns from the method invocation, its previous protection domain is
restored.

For example, policy modules of the operating system that traditionally are part of the ker-
nel, may be implemented as persistent objects. A Thread executing one of the methods within
these persistent objects may require access to Germ data structures. This is possible by having
the Thread enter Supervisor state to execute the method. The gate mechanism changes the pro-
tection domain by altering the execution level.

Threads access persistent objects using an object descriptor and method. A Thread must
obtain the object descriptor before use. Object descriptors are provided from user or system
name servers.

Name servers are persistent objects. Choices includes “standard name servers” that are in
the Kernel and may be accessed by every Thread. These name servers provide basic faciliiies iike
the standard file system and intertask communication. Other user defined name servers must be
accessed through the standard name server utilities.

On request, the name server grants the Thread access to the object and returns the object
descriptor. The grant operation is implemented in the Germ and checks Kernel protection policy
to determine if the name server/Thread grant operation is valid. The name server must have
appropriate access rights to the persistent object. If the operation is valid, the Germ adds the
Space of the persistent object to the Space Access List of the Thread, updates the Thread’s
Universe, and returns the Space address and gate information to the name server. The name
server packages an object descriptor which includes the persistent object, Space and gate infor-
mation and returns.

An operation on a persistent object is invoked through a gated request. The Germ ensures
that the object descriptor and method used by the Thread gated request correspond to the valid
persistent object address and method entry point within the Space. The Space Access List of the
Thread is changed to reflect the protection domain requirements of the Space.

In hardware architectures with limited virtual memory, the gated method of invoking a per-
sistent object allows many different Spaces to share the same virtual memory address range. The
Space and the persistent objects it contains can be mapped into and out of the same address
range on demand3. In such implementations, the Space Access List will contain each Space, but
only one of the Spaces will be present in the Universe at any one time.

’ In many hardware architectures, a persistent object must be relocated by a link editor to allow it to execute within a speci5c
addresa range. This implies. that once it is activated, it cannot be moved to a new address range.

6. Exception Handling in Choices
Exceptions in Choices are managed by the Ezception class and its various subclasses. The

parent class of Exception defines the method, handle, to manage or correct the exception condi-
tion. Upon an exception condition, the Choices Germ manages the task of converting the machine
dependent details of exception processing into an invocation of the handle method for the Excep-
tion object managing the exception. Various subclasses of Exception define the behavior of handle
in different ways. Some subclasses of Exception are actually container classes which, based on
other inputs, send the handle message to another Exception object contained within.

Two subclasses of Exception of interest are Trap and Interrupt. The Trap class provides
Choices with a mechanism for handling traps that a Thread may generate as a direct result of its
execution. This includes machine traps (that is, divide-by-zero or illegal instruction), virtual
memory access and protection errors (that is, page faults of various types), and explicit program
traps (for example, a “system call”).

The basic function of a Trap handler is to, if possible, service the exception condition within
the context of the faulting Thread, otherwise to terminate the execution of the faulting Thread.

Interrupts occur asynchronously and, in general, have nothing to do with the currently ex+
cuting Thread. In Choices, an Interrupt can be awaited by a Thread (and must be awaited if i t is
not to be missed). The handle method of the Interrupt class saves the details of the interrupted
Thread and resumes the Thread awaiting the occurrence of the interrupt. The Choices Germ has
no requirement that all interrupts be handled by the class Interrupt. A Choices kernel implemen-
tor can choose to have any type of Exception object handle an interrupt. In future work, various
user-oriented exception schemes will be implemented as classes and by the interface compiler.
Examples of such schemes can be found in [5] .

7. Summary

A Choices Kernel currently runs on a 10 processor Encore Multimax that supports the
Store/Space/Universe model of memory management as well as the Task/Thread process con-
cepts. Current effort is devoted towards improvement and further implementation of communi-
cation and persistent object support. Future plans include an object-oriented file system, an
advanced interface compiler, and tools for configuring Choices systems. Once Choices is stable,
the code will be placed in the public domain to promote research into customized operating sys-
tems.

8

1.

2.

3.

4.

5.

6.

7.
8.

9.

10.

11.
12.

13.

14.

15.

16.

17.

18.

References

Accetta, Mike, et. al. “Mach: A New Kernel Foundation for UNIX development.’’ USENIX
Conference Proceedings, June 1986, pages 93-111.
Allchin, J. E. and M. S. McKendry. “Support for Actions and Objects in Clouds: Status
Report.” Georgia Institute of Technology Technical Report GIT-ICS-83/1, Atlanta, Geor-
gia, January 1983.
Brownbridge, D. R., L. F. Marshall, and B. Randell. “The Newcastle Connection, or
UNIXes of the World Unite!” Software - Practice and Experience, 1982, pages 1147-1162.
Campbell, Roy H. and T. J. Miller. “A Path Pascal Language.” Department of Computer
Science Technical Report UIUCDCS-R-78-919, University of Illinois at Urbana-
Champaign, Urbana, Illinois, April 1978.
Campbell R. H. and B. Randell, “Error Recovery in Asynchronous Systems.” IEEE Tran-
sactions on Software Engineering, Vol. SE-12, No. 8, August, 1986, pp. 811-826.
Cheriton, David R. and Willy Zwaenepoel. “Distributed Process Groups in the V Kernel.”
ACM Transactions on Computer Systems, May 1985, pages 77-107.
Encore. “Encore Multimax Technical Summary.” Encore Computing Corporation, 1986.
Li, Kai and Paul Hudak. “Memory Coherence in Shared Virtual Memory Systems.”
Proceedings of the Fifth Annaul ACM Syposium on Principles of Distributed Computing,
August 1986, pages 229-239.
Lu, P. M. “A System for Resources Sharing in a Distributed Environment-RIDE.”
Proceedings of the IEEE Computer Society 3rd COMPSAC, IEEE, New York, 1979.
Popek, G., B. Walker, et. al. “LOCUS: A Network Transparent High Reliability Distri-
buted System.” Proceedings of the Eighth Symposium on Operating Systems Principles,
December, 1981.
Rashid, Richard F. “Threads of a New System.” UNM Review, August 1986, pages 37-49.
Rifkin, Andrew P., et. al. “RFS Architectural Overview.” USENIX Summer Conference
Proceedings, Atlanta, Georgia, 1986.
Robison, Arch. D. “A Functional Programming Interpreter.” M.S. Thesis, Department of
Computer Science Technical Report UIUCDCS-R-87-1714, University of Illinois at
Urbana-Champaign, Urbana, Illinois, March 1987.
Sequent. “Balance 8000 Guide to Parallel Programming.” Sequent Computer Systems, Inc.,
July 1985.
Snyder, Lawrence. “Formal Models of Capability-Based Protection Systems.” IEEE Tran-
sactions on Computers, Vol. C-30, No. 3. March 1981.
Swinehart, Daniel, Polle Zellweger, Richard Beach, and Robert Hagmann. “A Structural
View of the CEDAR Programming Environment.’’ Transactions on Programming
Languages and Systems, October 1986, Vol. 8, No. 4, pages 419-490.
Tanenbaum, Andrew S. and Sape J. Mullender. “An Overview of the Amoeba Distributed
Operating System.” ACM Operating Systems Review, July 1981, pages 51-64.
Walsh, Dan, et. al. “Overview of the Sun Network File System.” USENIX Conference
Proceedings, January 1985, pages 117-124.

9

19. Wittie, L. D. and A. Van Tilborg. “MICROS - A Distributed Operating System for
MICRONET - A Reconfigurable Network Computer” in Tutorial, Microcomputer Networks,
H. A; Freeman and K. J. Thurber, eds, IEEE Press, 1981, pages 138-147.
Wulf, William A., et. al. “HYDRA: The Kernal of a Multiprocessor Operating System.”
Communications of the ACM, June 1974, pages 337-345.

20.

10

APPENDIX C

Choices Code

Owner russo at m.cs.uiuc.edu
Name .. /h/O bjec t.h
Account 173
Site Dept. of Computer Science
Printer 24/300
SpoolDate Thu May 28 10:00:52 1987

JobHeader on
JamResistance On
Language printer
formwidth 132
f ormsperpage 2
outlines on

IMAGEN Printing System, Version 2.2, Serial #86: 2: 85
Page images processed: 26
Pages printed: 26

Paper size (width, height) :

Document length:
2560, 3328

6 0 3 16 bytes

8
1

* S b -] e c c . n r l e f i n l r i o n s f 'he 3 b ~ e c t p a z e n c c i s s i = h * p a r e n t 3 f rii : I i s ses ,

S H e a d e r . :b]ec: h . v 1: 3 97/05/21 1 5 49 55 r . 1 5 ~ 0 ESP 5
$ L J c K e r $

* The l e r t r i i c t o r f3: S b l e c t 1s made v z r z z a i so 111 dercruct9rs t h r o u g h o u t
* the 3ys:em will 0- illrevise T h i s a l l o w s 3 0 1 1 e c t i o n s o f o b l e c t s

t o DC k % p t and d e l e t e d . v h i l e a r s u r l n q t!Ie proper d e i t r ~ c t o r ~ w i l i b e
* c a l l e d Cor each class. I t i n c r e a s e s t h e s i z e of e v e r y 3b:ect i n t h e

s y s t e m by t h e size of a p o r n r e r b u t .who c a r e s , memory i 3 ;heap
. I

K o d i C ; c a t i o n H l s t z o y
SLoq: J b] e c t . h . v S

* R + v i s l O n i l 0 97/05/21 15:(9 55 : ' A S S 0

* Conso1e :np-t and p r i v a t e s t a r e 3

* R e v i s i o n 10 0 q 1 / 0 4 / 2 2 3 7 1 3 I 8 russo
f N e w S p a c e r . 3 n i v e r s 2 s tad CP3 3 b ; a c r s VO:.~, F i n a l l y '

* R P V I S ~ O ~ 9.: 3 7 / 3 4 / 7 4 1 5 ,35.?4 :'ASSO
* K-lt :pl . t h r e a d s and riser i n t e z r u p c s

* ReviDion 3 4 97/C3/29 16 5 1 . 1 2 r u s i o
a d d e d d.inmy : n l i n e : o n s t s ' ~ c t 3 r

Re~ls10n 8 3 81/03/29 16 47.50 russo
* added O b J c c t 1s p a r e n t class

R e v i s i o n 3 . 1 8 1 / 0 3 / 2 9 is 3 5 . 4 5 russo
* i a i c 1 % 1 r e v z s i o n .
* /

srtndef O b i c c t - h
d e f i n e Q b] e c t - h

: I i r s O b -] c c t i

BUD1 IC :
O b J e c t ') - (! ;
v i r t u a l C b] e c t t j : // see comment above

l e i d r f Ob]ac t -h

ORIGINAL PAGE IS
OF POOR QUALITY,

I
I
I

a y 1 6 3 5 1 5 1907 / h / A r r e r t h P a g e 1

A s s e r t . h - A s s e r t i o n s

$ K e a d e r : A s s e r t . h . v 1 1 . 0 87/05/21 15:49:16 russo I K ~ 5
$ L o c k e r : 5

* /

* K o d l L i c a t r o n h i s t o r y .
$Log: A s s e r t 5 , v 5

~ e v l s l o n 11 o 87/os/ai 1 5 : 4 9 : 1 6 r u s s o
Console i n p u t a n d p r i v a t e s t o r e s .

R e v i s i o n 10 o 87/04/aa 07:33:01 r u s s o
New Spaces. U n i v e r s e s a n d CPU o b j e c t s v o r k , F i n a l l y !

B e v i s i o n 9.0 87/04/04 15.05:Ol russo
* U u l t i p l e t h s e a d s and t i m e r i n t e r r u p t s .

R e v i s i o n a 0 87/03/19 15.29:38 russo
* n e v a n d -delete added for memory manaqemen t . A l s o , class i n t e r r u p t s work

R e v i s i o n 7 0 8 7 / 0 3 / 2 5 12 4 5 : 4 S russo
0 F a u l t h a n d l e r hierarchy w o r k s , so does l n t e r p r o c e r s o r v e c t o r e d i n t e r r u p t s .

B ~ V L S ~ O ~ 1.1 E ~ / O J / P ~ L E : ~ I : J ~ lohnston
x n i t r a 1 1 e v 1 r 1 0 n

* I t l .

t i f n d e f A s s e r t - h
I d e f i n e Assert-h

I i f d e f ASSERT

?xtern v o i d -Asrerc(c h a r f gxp. char * f i l e . int lrae I ,
I d e f i n e A s s e r t : c r p i if(e r p j ; else - A s s e r t (" r ~ p " -FILE-- - LINE- 1

: o n s t i n t NOTllEACBED = 0;

I e l sa

l d e f i n e A s s e r t ! e x p J

l e n d i f ASSERT

I e n d L f A s s e r t - h

X o d i f i c b t i o n h rSt0r . f
SLog Debug h 7 S

~ e v l s i o n 1 1 37/07/13 18 1 1 12 l o h n s t o n
~ I n i t i a l r e v i s i o n

l i f n d e f 5cbu3-h
/ l 3efine 3ebuq-n

, * x t e r n V D L d ? r l n t L < c h a r * ,
\e?Lte:e v o i d C ? U ? r i i t f (C h a r * , I
l k s t r r n voLd P i n i c P r i n t f i c h a r * 1 ,

I i f d e f DEBUG

l d e f i n e Debug C P U P i i t t F

/ I e l s e DEBUG

I / / This is i n t r n s t e a d of v o i d t o avoid " s o r r y

' l e n d i f DLBUG i l e n d i f Deoug-h

n o t ~ m p l e m e n t e d " t h i c g s
i n l i n e / * s h o u l d b e v o i d * / r n t Debug(c h a r * , . ! [reKurn (O I , !

I

* *IN h - V i r t u a l memory m a n a g e n e s t (MHO. page tables, 7 i r t u a l a d d r e s s e s . eKc. I

$ H e a d e r ~ n . h , v 11.0 87/35/21 1 5 : 5 0 77 russo EX? S
$ L o c k e r . 5

* /

* ! l o d i € i c a t x o n h i s t o r y

* Re7islon 11 0 97/05/71 1 5 50 77 r u 6 s o
$Log Vn h v S

C o n s o l e i n p u t a n d p r i v a t e stores.

* R e r i s i o n 10 0 81/04/17 07.33:59 russo
* New Spacer. Universes and CPU ob]ec t s w o r k , F i n a l l y '

R e v i s i o n 9 7 87/04/71 05:47:03 j o h n s t o n
* ! lake s h i f t a r g u m e n t s u n s i g n e d to a v o i d s i g n e x t e n s i o n .

* 0e71sion 9 . 4 87/04/10 09:37-26 russo
f a d d e d i n l i n e r for :onvers ion Z r o m a d d r e s s e s t o p a g e s and f r a m e r

* ~ e ~ i s i o n 9 a 87/09/16 16:13:59] o h n r t o n
* Added p a g e / p o i n K e r t i a l e t y p e d c c s and b e t t e r i n i t i a l i z a t i o n r o u t i n e
* d e c l i r a t i o n s

* R e v i s i ~ n 9 0 87/04/04 15:56.10 r u s s o
* ! l u l c i p l e t h r e a d s and t i m e r i n t c r r , x p t s .

Revision 8 0 87/03/79 15:30:16 r u s s o
n e w and - d e l e t e added Cos memory managemen t . A l s o . c i a s r i n t c r r u p t s work

* R e v i s i o n 7 0 97/03/15 :2.16:47 r u s s o
* F a u l t h a n d i e r h i e r a r c h y works. so d o e s ~ n t e r p r o c a s s o r 3 e c t o r e d i n t e r r u p t s

* Rev131011 4 0 97/03/10 :4:12.37 ~ o h n r t o n
f A l i new f o r 1987'
* /

I l f n d e f VM-h
l d e f i n e L'74-h

l i n c l u d c ' m d - e o n s t a n t s . b "
I i n c l u d e 'Debug . h"
I i n c l u d e " A s s e r t . h"
I r n c l u d e " O b l e c t . h" // parent class o f 'IA I n d PTE (f o r nov:

I .

B u i l d i n l l n s f u n c t i o n r e t u r n i n g t h e v a l u e of t h e ndmed f i e l d .
* /

l d e f i n c FIELDFUNC(name I u n s i g n e d n a m e (, \
I :ct?l:n , d a t a f l e l d name 7 ; I

/.
V i r t u a l a d d r e s s

e /

ORIGINAC P-KGlJ I3
OF POOR QUALITY

! 1 s 5 '.'.a. '
.ln13n :

. ~ a s i q n + d a l l ;
S Z T U C t (

' ~ n s i q n e d 3 f f s e t . 9 ? , g e o f f s e t
u n s i g n e d 5 e c o n d L e v ~ l I n d e s . 7 . ,// Level 2 ;ndex
u n s i g n e d f 1 r I t L e v e l : n d e L . 8 . / / Level ! i n d e s
u n s i g n e d r e s e r v e d 9 ,,I RESER'JJED by h a r d w a r e

1 f i e l d ;
j d a t a . .

, i n s i q c e d a s i i q n l u n s i g n e d all 1

A s i e z t l (I V A * i & r l l l - > d a t a . f i e L d resa:ced == S I
rOtY:n (d a t a . a l 1 = all) ;

!

u n s i g n e d r s r ~ g n , u n s i g n e d 1 1 1 s . u n s i g n e d 12:s. u n s i q n e d o f f s e t j

a s s i g n 1 0 1 . t

(a s s i g p i v a I :
[d a t a a l l I Va.da ta a1L. !

(a s s i q n i l l i r 1 2 1 s . o f f s e t , i

J n s i g n o d v a I

':A L l a)

i n s i g n e d l i i~ . u n s i g n e d i 2 i x . u n s i g n e d 3 f f s z t i

cp.1: f 7 6 ,
I a s s i g n ((u n s i g n e d 1 v a 1 ; !

[a s s i g n (l u n s i q n e d i 7 6) . I
v o i d f va 1

ORIGlNAC PAGE Is
OF POOR QUALIW

1 n s ~ 3 n a d a p e r a t o r = (u n s i j n e d va]

, i n s i g n e d o p e r a t o r s 1 VA va 1

O p e K % t o r u n s i g n e d ()

(: * tu rn (a s s i g n , v a 1 1 , 1

[:*t 'arn (d a r a . a l 1 = VI d a t a a l l 1 >
[r e t u r n (d a t a a 1 1) ; !

FIELDPUNC(f i r r t L e v e l 1 n d . r 1
FILLSPUNC(r e c o n d L e v e l I n d e x 1
FIELDIUNCi offrat I

(ay 1 5 0 5 0 5 1987 ../h/VU h Page 1

I .

f Address conversions. ./
i n l i n e u n s i g n e d i n +
% d d r T a P a g e (v o i d a d d r j

r e t u r n 1 ((u n s i g n e d i n t i a d d r) >) PACESHIFT I ,
I

i n l i n e v o i d
?ageToAddr l a n s i g n e d i n t pagenumber 1
I

t

i n 1 1 n e uaslgned i n t
addrToFrame1 v o i d a d d r)

i

i n l i n e v s r d
f r amcToAddr (u n s i g n e d i n t f rameNumbar)
!

I

z e t u r z i (v o i d *) (pageNumber < (PACESHIIT I 1 ,

r e t u z n i ((u n s i g n e d i n t) a d d r) >) 16 1 ,

:e tuKni (v o i d *) (f r amenumber < < 16 I I .

/.
* P a g e r o u c d i n g
* I

o v e r l o r d P i g e l l o o r

i n l i n e u n s i g n e d i n t
?agefloor(u n s i g n e d n)

[

1

i n l i n e u n s i g n e d i n t
P a g e r l o o r , v o i d * a 1
(

t

o v e r l o a d P a g e c e i l i n g ;

i n l i n e u n s i g n e d i n t
P a g c C e l l i n g (u n s i g n e d n)
1

= - t u r n (n b -$PACESIZE - : I 1

r e t u r n (P a g e F l o o r ((u n s i g n e d) a 1 i .

u n s i g n e d f = P a q e F l o o r (n 1 .
r e t u r n ((n I= f) 7 n : (f + PAGESIZEI 1 ;

1

i n l i n e u n s i g n e d I n t
P ~ g e C e l L l n g (v o i d L]

I

_ _

data field modified = 0 ,

I

?'it insigned p t d

data all = p t e
lata field rerezenccd = 3
data frcld modiflea = C

ORIGINS PAGE IS
OF POOR QUALITY

dosigned operator=(PTE ptP)

data all = pte data all,
data field reterenccd = 3
data field modified = 0,
return I data all

unsigned operator-. unsigned pte)
I I

data all = pce.
data field referenced = I :
data,ficld modified = 3;
return ! dati. all i ;

i
i

1

ay 16 I 5 0 5 : 9 8 7 /h/VM h P a g e 5

operator unsigned(j
I return (data all i , }

void map(unsigned p n , unsigned pl I
I

Assert; pn < 3x3009) . / / Page number in range.
Assert! pi < Ox4 I // Protection l e v e l in range.
Assert('data f;eid.valxd I; // P a g e not already mapped.
data fLeld pagcNumber = pn.
data f i e l d protcetronlcvel = pl;
data ficld.val:d = 1;
data.ficld.referenccd = 0;
data.tield.modificd = 0;

1

void map(unsigned pn I
I

Asserti pn < Ox8000) ; / / P a g e number in r a n g e .
hssert('data.field.valid) ; / / Page not already mapped
data fleld,pageNumbcr = pn;
datA.field.valid = 1;
d.ti.ticld.referenced = 0;
1ata.tield modifled = 0,

void '~nmap()
I

A s s e r t (data.field valid) ,
drta.faald.valid = 0:

I

void handle(unsigned hi. insigned pl j

I
Assert(hi < @VLKMNOLEBSI. /,, Handler rndex rn range
Assert(pi < 2 x 4 1 .
data. field handlcr'ndex = 31,
data. f icld prstectlonLevY1 = pi.
dati.field.referenced = 3 .
drta,ficid modified = C ;

/ / P:otection level in range.

FIELOFONC(pageNumbcr 1
FIELOFUNC(handlerIndex I,
FIELOFUNC(modified 1 ,
FIELOFUNC(referenced) ,
FIELOFUNC(pr0tect;onLersl) .
FIELOFONC(v a l r d 1

void printf!) ,

;'f,Page table initialization routines

ltypedtf PTE PageTable[2561

u n s i g n e d a s s i 3 n (u n s i g n e d e i a I
I

!
r e t u r n (d a t a 111 = e i a I ;

u n s i q z e d a s s i g n (L n i i q n c d tsPT3 unslqr .ed a d d r e s s 1

E I A (,

ETA(. n s i g n e d e i a 1
: a s s i g n ! 0 1 ; I

I a s s i g n (e i a) ; I

: l a t a . a . 1 1 = eir.data all; 1

I * r s l g n (t s P T 3 . iddress I ; 1

ETA(E I A C e l l)

E I A (u n s i g z % d txPTB. u n s i 3 n e d a d d r e s s I

u n s i q n e d operator=(n n s i g n a d m i &)

u n s i j n e d o p c r r t o r = i BIh ai. 1

o p e r a t o r u n s i g n e d ()

I r s t u r n i a s s i g n (e i a I I ; I

ret'urni d a t a a 1 1 = e i r . d a t a . a l 1 1 . 1

i r e t , u r n ! d a t a . ~ 1 1 I : I

l a s s XSR {
u n i o n (

u n s i g n e d all,
s t r u c t 1

u n s i g n e d trError : 1:
u n s i g n e d mag:c : 1;
u n s i g n e d BPTEr ro r : 1.
u n s i g n e d P r o t L e r e l E r r o t : 1:
u n s i g n e d L l P T E E r r o r : 1;
u n s i g n e d LaPTEErroL : 1;
u n s i g n e d BPS 1:
u n s i g n e d reserredl 1;
u n s i g n e d rerdlrror ' 1:
u n s i g n e d 3 P T R e a d E r r o r . 1.
u n s i g n e d t x S t a c E r r o r 3
u n s i g n e d B P T S t a t E r r o r ' 1 -

u n s i q n e d CxSupervi SOT 1 :
u n s i g n e d UserPTB 1

' ~ n s i q n e d txUrer 1:

' J n s i g n e d o v e r r i d e 1.
u n s i g n e d S P T L n i b l e 1:

u n s i j n e d a i 1.
u n s i g n e d 3 P ? U s e r o n l y i .

u n s i g n e d f l o v T r a c e ' 1;
u n s i g n e d t l o v U s e r O n l y 1:
u n s i g n e d n o n s e q l r a p . 1.
u n s i g n e d reserved2 5 ;

f i e l d :

// Address t r a n s l a t i o n e r r o r .
// C l e a r 1 5 1 .
/ / B r e a k p o i n t error
// Pr3 t sc : ion level e r r o r .
// F i r s t l e v e l PTE error.
/ / S e c o n d l e r e l PTE error
/ / ~ P R ; / ? c a u s e d errsr
/ I IESER'IED b y h a r d w a r e
f / Writs r e 3 d e:rar
/ / W r i t e / : e i d S r e a k p o i n t 2r:or
I I T r a n s i i t i ~ n n u s cycle errar ,
/,, S r e a k p o i n t bus c y c l e error'
,!/ - r a n s l a c e %user a d d r e s s e s
0 : r a n s l a t e s u p e r v i s a r I d d r s
I,' ':$e ?780/1 f = r user.
,,,, 'Jse s u p e r ?rats for 1s-r
:/ l n d b l e b r e a k p o i n t s
i,, > r e a r p o i n t i n user node o n i r
/ / ?.bort/NnI t r i p '
,!/ P n a o l e f l o v c r a c l n q .
/ I 7:ov t r i c e i n user mode o n l y .
/,, icablr n o n s e q . f l o v c r a p s '
/ / IESPRVED 3y h a r d v a r e .

ay 2 6 0 5 3 5 1907 /h/VPI.h P 4 9 e 7

u n s i j n e d a d d r e s s 1 !

u n s i g n e d t s P T B i 1

v o i d p r i n t f ! 1;

r e t u r n d a t a . C i e l d . a d d r e s s) ; I

I :&Urn ! d a t r . f i e l d . t x P T 3 I ; 1

* Memory s t a t u s r e g i s t e r
* /

I d a t a ,

u n s l g n e d a s s i g n (u n s i g n e d m s r 1
(

A s s e r t (((1 5 1 *) i m s r] - > d a c a . C i e l d r e s e r v e d 1 == 0 I .
A s s e r t ! ((n s B *] i m s r) - > d a t a f ~ e l d . r e s e r r e d l == 0 I :
r e t u r n (d a t a . a l 1 = msr I;

I

u n s i g n e d a s s i g n (u n s i g n e d m a g i c , u n s i g n e d truser
u n s i g n e d t x s u p e r v i s o r . J n s r q n e d userPTB j

I
A s s e r t ((m a g i c == 3 1) l m a q l c == 1 1 1 ;
A s s e r t ! (t x u s e r == O j (1 ~ t l U s e r == 11 I ;
A s s e r t ((t x s u p e r r r s c r = = o j I I t r superv i sor = = : I I

I

I
!

I
~

~

!
I

i
i
i
i
i
I
I

i

I
I

?i ELDFUNC I
F I E L D F U N C (
h:EL3F'JNC
'ISLDF'1NC
B I E L 3 FYXC
F I E ; ~ F U : l C ,
BZELDFONC'
I ' I E L 3 F U N C i
?:CL3F'JNC 8,

i I E L D F U N C i t s g s e r ! ,

F I E L D F U N C i t s S u p e r 7 l r o r
F1E:DFUNCI userP73 J :
i I E L D E U N C averr:5e j
F I E L ~ F U N C I B P T E n a b l c i ,
F'.ELDE'JNC(s P T 3 s e r O n l y 1
? I E L D F U N C ' a i j
PIELDF'JNC(tloWTraCe j ,

F I E L D F U N C : f l o w U s e r O n ~ y
F I E L 3 F U N C (n o n r e q T r a p , ,
F I E ; 3 F U N C ; reserved2 1 ;

m i d p r i n t f i I .

: I t e r n v o i d W r l t e E I A (EIA e l
e x t e r n u n s i q n e d BeadEIAi 1 ,
+ x = e r n v o r d writcnsu nsu IS
exzern unsi ;ner l K c i d ! ! S K () ,

e x t e r n void w r i t e ? T B O (void
e s t e r n void W r l t e P T B l (v o i d
extern void * B e a d P T B O (j
e s t e r n vo:d ' K c a d P T B l () ,

l e n d i r vn-h

qay 2 5 5 5 . 5 5 1 9 8 7 / h / M . h ?age 9

/ / TSESE I ARE S U S ? I C I O U S

ORIGINAI; PAGE IS
OF POOR QUALITY

11
B
I

I
I

* ~ a v i s i o n 13 1 97/05/15 14 4 1 4 5 ?ohnston
' - (ICLCld st3:e . .

* 3evis:on 10 3 3 1 / 0 4 / 2 2 3 ; 11:15 r ' U S S 0

+ :$si, ;paces 7xiverses and cPU ab]eccs vork. Finally'

f s ~ ~ - ~ ~ : ~ ~ 9 : 37/04/15 13 39 1 4]ohnst?n
* t l x e d i~zitructor CJ use physical memory p a z s ~ LJ a l l o c a t e ltielf

, Rt-rislon 9 3 91/01/04 1 5 . 0 5 10 :usso
1 * n u l t ~ p l e threads and timer interrupts

, * Revision 3.0 07/03/29 lj:30 04 KUSsO 1 .
* - nev and -del+te addsd fJr menory nanagement A 1 ~ 3 . class interrupts vork

' - 3ec:sion ~ 3 37/03/25 12.45 I 3 zusso
' * E a u l r handler h r e r a r c h y u o r k s , so does ;nterp:scessor vectored 1nte:rupts

* Ee-rision 1 1 07/132/23 1 3 : 3 L 3 4 lohnbton
~ * :nitill rsv:sian

I
I * /

I :fndcf Store-h
f d e f l n c Store-h

I iiclude "Assert h"
:linciude "9ebuq.n"
I 1 include "Lock h ' ' I include "Object h"
i I L-cl'dde "vn. h
1
/class Store . puhliz ObJect I

Lock lack.
! unsigned basePiqc.

unsigned freePigeCount; 1 unsiqncd SetEnCryCount;
unsigned paqerPerSetEntry;

I u n s iqncd highPaqe.

!Play 25 05:05 1 9 8 7 ../h/Stort.h Page 7

I
unsigned set[ll;

?Old mark(.i-slqned p a g e) ;
void anmark: unsiTned p a q e 1;
int sarked(ansigned page j ;

unrlgned neitlrect unriqnsd l o w p a g e I ;

1
I
I

I unsiqncd contiquous(unsigned lovPage. unsigned pagecount 1;
I

I

Iprrblrc:
Store(unsiqncd bascPaqe,

unsigned pagecount.
unsiqncd stateBasePags 1;

-store() :

char allocate(unsigned pagecount I ;
void deallocate(char basaAddr, unslqncd pageCount I ;
void :eserve: unsiqned basepaq.. unslgned pageCount I i

int instort(unsianed paq* I ;
int instace(char f adds) ;

inlinc :3t
Store -nStorer Zhar adds I

, [
i e t i lrn (this->inStore(addrToPaqe(l ~ h a r *) PaqeFloor add: J 1 I 1 .

1)

Iinline 1st

, (
Store :marked(u n s ~ g n e d p a q e j

Assert(5his-~inStore(paqe I :;
'Jnsiqned offrecPaqc = p a q e - this->barePagc;
Tecurn (this-,set[otfrctpag~ / thi5-,paqcsPcrsetEntsy i b

(3x1 < < (offsetpage 8 this-,paqcrPersecEntry 1 1 1 :
I

j inline void
:Srore::mark(unsigned p a g e I

Assert(this->inStore(p a g e) I ;
Assert(' this-,marked(page I 1 ,

thir->sec[otFsetPaqc th;s-~prgc~PcrSecEnrry 1 / =

Assert(chis->markedl p a g e) 1 :
A5ser11(this->CreePaqeCounc ' = 0 1 ;
this->freePrgeCounr--.

unsigned OffsetPage = p a s t - thLS->hdSePlqe:

: 011 < < t offsetpaqe t thls-,pagesPcrSetSntry I 1 :

t

-- I

~~ ~~

dy 2 6 '35 5 5 1 9 9 7 /h/md-zuneable h P i q e 1

md-tuneab;. h - Nachine-dependent. tuneable parlmecars
$Header md-tuneable h v 11 'I 97/05/11 15:50 40 russo Esp 5
Siockdr 5

* /

* Modification history:

Revision 11.9 37/05/21 1 5 53.40 russo
Console input and p r l r a t s StOEe5.

* Revision :0.3 97/04/72 07.34 08 russo
* N e w Spaces l n i r e r s e s and CPU o b j e c t s work. Finally'

R C V L S I O ~ 9.9 97/01/04 15:06:19 russo
* Nultrple threads and timer interrupts.

* Revision 8 3 87/03/29 ?5:10:25 russo
* -cew and -delete added for memory sanaqcment . Also. class interrupts vork

* levision 7 0 87/03/25 1 1 : 4 6 : 5 8 russo
* Fiult hacdler hierarchy vorks. so does interprocessor vectored interrupts

* Re71sion 4 1 81/03/09 1 2 : 4 2 : 4 7 lohnrton
* I a i f i d i :evision.
* /

S L a g md-tuneable h.v S

. c ..>def md-tuneable-h
dctine md-f.Aneable-h

* P 3 3 e frame ringer and addresses

* NOTE 1 ' f r a m e " IS the space mapped by 3 slnqle *flrst-lcrel* page tdbie

* I
onst int YFKAMES = 1 5 6 . Complete address s p a c e : O 255

/ / T h l ~ 1s 64k * 2 5 6 i .6U bytes.
,/ T h i s *must. be (1 256

d n r r ~ r54k oytes. here,

onst rnt CKLOWPRAUE =
onst rnt CKLCWPACK =
onst int GKLOWADDK =

o n s t int CKEICEFEAKE =
onst int CKEICHPACE =
onst int CKHICRADDR =

3s9003o0.
o s o o o o o o :
'3x000000:

// CerwKerncl (0 . 126)

3 s o o o o 7 f .
3KHICHFRANE < (7
CKEICKFMME (< 16

onst int STACKLCWFRAME GKBICHFRAME.
onst Int STACKLOWPACE = CKHIGHPAGE
onst ~ n t STACKLOWADDR = CKHICHADDR

/ / System stack (127)

Iconst I n t TEBEADSTACPFRAT.E 2 5 1 // T h r e a d < t a c k inside 3 f Task space) I

I

I
I

I
I
I

c o n s t i n t AWLOWFsAnE
c ? n s t i n t BSTLOWPASE =
c o n s t i n t EWLOWA3DR =

TASKEICEFRAME / / X W 2 5 2 2 5 5 1
TASItHISHPACE
TASKAISHADDR.

' c o n s t I n t E i i l i I G A F ~ E = ' 3 X 0 0 0 1 3 0 ;
/ c o n s t :nt AYBICEPACE' = BWAICYFRAKE ((7 .
! c o n s t i n t HWSXSRADDB = H W H X C H F M H E ((15;

~

a y 2 6 0 5 0 5 1 9 8 1 . . / h / m i - t u n m a b l e . h Page 1

f mi- tuneab lm. h: n a c h i n m - i n d e p e n d e m t , t u n e a b l e parameters

$ H e a d e r . m i - t u n e a b l e h,v 1 1 . 0 Bi/O5/11 1 5 : 5 0 : 4 3 ru5so EX? S
$ L o c k e r S

* : ' x i i f i c a t l o n a i s t o r y :
$Log: m i - t u n c a b l e h,v $

Revlszon 1 1 . 0 87/05/21 i5:50:41 r u s s o
C o n s o i e i n p u t a n d private 3tores.

Revision 10.1 8 1 / 0 5 / 0 1 05:41:1S]ohns tOn
C h a n g e d PiAXCPVs f r o m 31 t o 64.

K e v ~ s 1 0 1 10.0 81/04/aa 07:36:11 russo
New Spaces, u n i v c r 5 e s and C P V o b] m c t s work. F i n a l l y '

Rev'15ion 9 . 1 8 7 / 0 4 / 1 5 1 5 : 1 5 . 1 0]ohnsCon
Added WXEENELS.

S e v i ~ i o n 9 0 97/04/04 :5 06 11 r u s s o
n u l t i p l e t h r e a d s a n d timer interrupts

R ~ I I S ~ O ~ 8 o 87/03/~9 1 5 3 0 1 7 IUSSO
new a n d -delmte addmd fox manory r a n s q a m a n t A l s o c:ass i n t e r r u p t s voek

R c v i ~ i o n 7 0 8 7 / 0 3 / 1 5 11 41 01 r u s s o
1 Z l u l t h a n d l e r h l e r a r c b y w o r k s . 5 0 d o c s l n t c r p r o c c s s o r v e c t o r e d L n t c r r U p t S

1 - Modiiicatlon history
1 . SL?q nd-conscants h 7 S

R e v i j . a n 11 9 37,(05/11 1 5 50 3 7 russo

~ * Qevision 13 3 37/14/22 0 1 3 4 05 ruSSO
1 * N e w $paces Jniverser ind C P U obJecti w o r k . Finally'

I .

1dcf:r.e PSR-':-31? 3
/Idefiae 7 5 8 U 256
~ l d e f i n e P I R I C - E : T 3
!ldefine P S R C I
itdefine P S R I I - B I T 1 1
: Idef ine P S I - I 2049
Ildetine P S R - S - 3 I T 9
ifdefine P S R - S 512
ldefinc P S R S BIT 9

~ l d e f ine PSRIS-512
lIdefine P S R - T - B I T 1
Idef-re P S R - T 2
'ldef1r.c T S R - F - B I T 5
!(define P S R - F 32

I

ORIGINAL PAGE IS
POOR QUALITY

LryTF35 5 5 1 9 8 7

I
1': D P c contrzi/statJr r e g i s t e r s ' * /
Itdefine D P C S T A T U S O X f ff f fffC / * D P C status register * / 1 ldef ice D P C I C O N T R O L OrFffffei8 / * D P C control rrg i s ter * / ' (de f I n e DPC-STATUS_'JBDS-BUSY

/h/md-constints h Paqe 2

3 re 0 0 0 00 0 / * 'Iectzr ous busy * / jl.
* D P C Vector Bur registers
* / j ldef Inc D P C V E U S C L A S S

j ldef ine D P C I V B U S I T X

I
'ldefine IO-BASE
itdefine I 5 3 4 3 A S E
~ ldefice S L - B X S E
Idet-ne SYS-CLOCK
(define C O U N T E R
,Idefine Y A X C C C N T E R

ldefine DSD-WADDB
ldetine DSJ-WIO

Ildefine I C U - B A S E
Idefine I L - B A S E

ldefine P P I - J A S E
,#der ine C P ' J - N K I R E G
lderine G E N N K I

I Idef ine 4EKNMI
,Idetiae i ? O - I I I R E C
Idetine C P U - 1 3 R E C
ldetine CPU-I3
Itdefine P P I - C T L
ldet i n e P P I N I T
Idefine K O K K I L L

,

Orf f f f Le22 / * C l a s s reqrster * /
Oxfftffelk / * Transmit register * /

0x800000
0x800060
I534 BASE
(I 53;-BASE+4)
(I 5 3 4 -BASE+ 6)
OXff

OrOObcOO
QxBOObcO

3rtr r eo0
3 x 8 0 0 0 5 0

J s c o o o 7 0
P P i - m s e
IsOd
lX0C
[P P I - B A S E c l)
I P P I - B A S E + 4 1
0 x 7
(P P I - B A S E C S)
0181
0roe

ldef i z c CPU-SWREC 0xc00010
!define SW-BOOTCPU 7
ldefine SW-CLOCK 6
ldef ine SW-NET 5
Idetine S W - D I S K 4
ldetine S W - S E R I A L 3
Idefrne C P U - K C R E C h R E G Oxc00030

#define CPU-MPARREC-BASE 0x800040

ldefine N U M S Y S T N T R S 256 ,

/ * Base of 1/0 space * /
/ * 3ase i f 4-line asynch card * /
/ * S e r i a l Line base * /
/ * System clsck address * /
/ * Frde runninq counter iddress * /
/ * ?(axinurn v a i u e af caun:er * /

/ * DSD wareup addrasr * /
/ * DSD wakeup I / O address * /

/ * Intcrr.;pt Cantr?l 'init * / .
/ * InterLAN N 1 1 0 1 3 * /

,'* 3are > f ParalZel Ports * /
/ * C P U m i register * /
;* Generate n m i code * /
i * A r m m i code * /
/ * rntercpu rntrrr-Apt register *
/ * CPU identrficr r e q i s t r r * /
;* XasK Cor :pu id * /
/ * Control register * /
/ * Init cade * I
/ * K i l l rom code code * /

/ * C P D switch Keglster * /
/ * B o o t proccssoK * /
/ * C l o c k interrupt processor * /
/ * N e t w o r k interrupt cpu * /
/ * D i s k 1nte:rupt cpu * /
/ * s e r i a l line rnterrupt cpu * I
/ * Kachlne c h e c k register * /

/ * Xemory parity reg i s ter base */

/
8
I
I
1

I
I
I

I
8
8
I
I
I

D P C R E C I I T S - 4
iPCLiC-3ASE -512
S?CISG-SENCYEC - $ 1 6
3?CCTL-! lMI-DISABLE 4096

TL & E N SYSNMI 2397152

-
I d e f - n e >?CXEC-TSECTL - 4 5 1
ldef:lLe 3PC32G-TSECXl - 4 5 3
1dcf:oe 5PCREC-TSECNTZ - 4 5 5
(define 3PC-EIFOSIZP 1 7
$ d e f i n e DPCSBXCTL-TXRDY-BIT 2
ldcfine 3FCSBXCTL-RXRDY-BIT 0

lendif md-;onstants-h

ORIGINAC PAGE IS
OF POOR QUALITY

!
i
!
I

I

I
I

I
1
I

May 2 6 3 5 05 1987 / h / T a s k . h Page :

/ *
* Task h t a s k c l a s s d a s c r r p t i o n

S E e a d e r T a s k h v 11 0 87/05/11 1 5 50 1 6 russo E r p 5
$ L o c k e r 5

* /
/ *

* Y o d i f i c a t i o n S i s t o r y 1 SLoq T a s k h.v 5
* Revision 11 0 87 /05 /11 1 5 5 0 1 6 EUSSO 1 * Console i n p u t and p r i v i t c s t o r e s

* sevis:on : 0 . 3 87/05/12 1 5 : 0 6 : 5 1 r u s s o
added 1 n i t i a l T h r e a d member f u n c t l o n

R e v i s i o n 1 0 . 0 8 7 / 0 1 / 1 1 07:31.48 russo
Nev S p a c e s , universes a n d CPU o b] e c t s v o r k , C i n a l l y '

* Revision 9 3 B l i l 4 l l O 11:15:57 russo
* 3dded 1 l o c k t o t h e I n s t a n c e s

* RevLaron 3 3 91/04/01 1 5 : 0 6 ; 0 2 I u s s O
* Y u l t l p l e t h r e a d s and t i i m r i n t e r r u p t s .

%evisIon e o ¶ i / o > / a 9 15:30:01 IULSO
* >CY and - d e l e t e add& for rerory manaqement. Also, c l a s s : n t e r r u p t s work

* l c v i s i o n ? 3 8 7 / 0 3 / 1 3 lJ:16:36 russo
* F a u l t h a n d l e r h i e r a r c h y v o r k r , so d o e r i n t e r p r o c e s s o r - e c t o r e d i n t e r r u p t s .

* Rev:sion 4 1 97/03/09 16:ll:lO russo
f r n l t i a l ~evis.lon.
* /

i
~ I i f 2 d e L Task-h
, ldef i n e Task-h

/ + i n c l u d e ' 0 b J e c t . h " / / p a r e n t c l a s s
~I ; n c f u d e ' F a u i t E a n d l e r h"

1 .nc-ude " L o c k , h "
I lrnclude ' S p a c e . h "
11 i n c l u d e "T t I r e3d .h"

/ t y p t d c f Toid (* T P W) O ;

c l a s s T a s k p u b l i c Ob]ec t I
S p a c e space;
:ock l o c k .
- r u l t n a n d l e r S t a c k F a u l t E a n d l e r
? h e a d * t h r e a d s .

c l a s s T a s k p u b l i c Ob]ec t I
S p a c e space;
:ock l o c k .
- r u l t n a n d l e r S t a c k F a u l t E a n d l e r
? h e a d * t h r e a d s .

pub1 i c
T a s k (s p a c e * r p a c e . T P W i n i t l a l E n t r y P o i n t 1 ;
-Task1 1 :
T h r e a d i n i t i a l T h r e a d (1 ;
T h r e a d * r t a r t T h r e a d (T P N e n t r y p o l n t . ~ n t a r q u m e n t ! ;
s p a c e q c c S p a c e o I r e t u r n (space I: !

'May 2 5 1 5 9 5 138 ; /h/Thhrrad.h P a T t 1
i
/ *

* T 5 r c r d . h t h r e a d c l a s s d e s c r i p t i o n

SKeader: T h r e a d h,v 11.1 87/05/13 23 2 5 : 3 9 T U S K 0 %E? 5
SLockPr' 5

'/
/ *

j M o d l f l c a t i o n h i s t o r y
I * SLoq T h r e a d h , r 5
1 Revi sLon 11 2 87/05/11 23 1 5 39 r u s s o I removed u n n e d e d method

R e v l s ~ o n 11.1 07/05/11 13:23:10 r U S S 0

added L n s t a n c e v a r i a b l e t o s a v e t h e i n l t l a l USP

I B ~ v l s 1 0 n 11.0 87/05/11 15:50:39 ru530
I .

* i o n s o l e i n p u t and p r i v a t e s t o r e s .

Revision 1 0 13 37/05/13 18:55:39 ? U S S O
* m d e SermThread a s u b c l a s s c t T h r e a d , n o t K e r n c L T h r e a d .

ReVI l lDn 1 0 . 1 1 37/05 /11 09:50:59 K U s S O
* a d d e d new GermThread s u b c l r a s

I .

* i t e V l s ~ o n io io 97/05/10 a 1 . o s : a . g IUSSO
* e a c k t h r e a d nov c a r r i e s i r o u a d a small i n t e r r u e t s t a c k of x t s 3wu

1 . 1 f R e v i s ; o n 1 0 I 87/01/11 07:33:51 r u J S 0 , N ~ Y S p a c e s . U n i v e r s a s and cpu o b 7 e c t s w o r k . B i n a l l y '

, f R e v i s i o n 9 I 37/01/04 i5:06 0 5 K U 9 5 0 , * M ~ Z I ~ ~ C t h r 5 a d s and timer i n t e r r u p t s .
, *
' (I ~ c v i s i o n 8.9 37/04/01 :5 1 5 00 K U S 5 0 i added o r t s e t s f o r assexbler t o use

1 * Sevis10n 8 0 37/03/29 15.30 11 rusS0

1

! *

-neu and - d e l e t e added f?r memory n a n a q e m c n t . A i s o . class i n t e r r u p t s worK

* R e v i s i o n i I 37/01/25 11 46 41 T 3 s i O
* F a u l t h a n d l e r n l e r a r c h y works . so does l n t c r p r o c e s s c r V e c t o r e d i n t e r r u p t s .

I .

R C V L S ~ D I I 1.1 37/02/23 18:31.39] o h o r t o n
* I n i t i a l r e v i s i o n
* /

I i f n d e f Thread-h
(d e f i n e Thread-h

I i n c l u d e " O b] e c t . h " / / p a r e n t class
I i n c l u d e ''Space h "

c o n s t I n t S t a C k S l z e I (5 1 1 - 3 1) :

i c l a s s T h r e a d p u b l i c O b l e c t I
p r o t e c t s d

!

I
n

I
8
B
I
I
1
I
U
8

I
^. la= In'~rrspr;tick[;:lc~s~z~'

c h a r * s t i c k P 9 l n r e r .
c h a r * I D I T I I I J S ? :
~ n c ? r i s r r t y .
v o i d k e r a e l L n f 0 .
r y p e d a f v o l d 1 ' PFVl(1 ;
Space * lspacer / / l i s t o f $ p a c e r this Thread n e e d 3 t o r u n

: l a s s P e r n e l T 3 r e a d p u b l i c T h r e a d f
) r o t e c t e d -
,ubi IC:

K e r n e l T h r e a d : PFJ, l n r * , i n t int. v o i d . I .
- l e r n e l T h r e i d l 1 i

:;ass 3ermnThread p u b l i c T h r e a d I
3 :otectPd
> u b i i c .

j e r m T 3 r s a d (CermThr-ad * , ?F'.J ~ n t * , 1 n t . i n t . 71 id * I .
-Serx ,Thread, I :

t i

::ass I n t e r r s p t T h r e a d p u b l i c K e r n e l T h r t a d (
? r o t e c t e d .
? u b l IC

1n te r :Up tThread i PrV. i n t * . in=, ~ n t , v o i d * 1 .
- I n t + r r u p t T h r . a d (I ;
1r.t isPrcemptrnlet 1;

t ;

I endLf Thr3.d-h

a y 1 6 05 2 5 i987 /h/CPU h Page 1

C P l . h : per-cpu private infornarlon class

j 8 e a d m r : cP5.h.r 11.1 87/15/21 16:41:50 r'Asso E r e S
$ L o c k e r S

*/

n o d i f : = d t i o n S l s r o r y

Revision 1 1 1 87/05/21 16 11 5 0 r u s s o
only n e e d a s i n g l e t h r e a d t o d e l e t e n o t 1 q u e u e

$Log CPU h . v 5

Kevision 11 0 87/05/21 15:49.29 russo
COll3OlC i n p u t and p r i v a t e stores.

* R e v i s i o n 10.30 37/05/17 13.57:09 r u s s o
added D e l e t e Q u e u e member

Revision 10.17 97/05/11 17:39:37 russn
* added 13c.l and global store f i e l d s .

* R C ' I ~ S I O ~ 10.27 37/05/06 16.51:47 r u s s o
* made number o f vcetormd exceptions a member f u n c t i o n

* ~evision 10.21 97/05/01 19:09:17 r u s s o
added ld(j method

* x + v i s ~ o n 10 18 87/01/21 19:14.11 r u s s o
* added Number of s e c t o r e d e x c e p t i o n s C o n s t

* ~ e v l s ~ o n io ;o 37/04/16 ai 22.29 russo - added k s c e p r i o n s t u f f

* R e v i s i o n 10 0 37/04/21 57.33.l7 r u s s o
* New S p a c e s . !Jniverses and CPU o b l e c t s work, Finally'

R L V l s i o n 9.9 87/01/21 15:1::57 zusso
a d d e d I n t e r r u p t 3 t acC member.

* C c a 1 l . I 'Iirtu.iSetUp s h o u l d b e 1 f r i e n d t o s a v e a l o t Of r e t fUPCt1On
* t h a t s h o u i d nevez be c a l l e d b y a n y o n e else.

* R e v i s i o n 9 1 87/01/11 0 9 : 5 3 : 2 1 : u s s o
initial revision

*/

i f n d e f CPU-h
deC;ne CPU-h

i n c l u d e " m i - t u n e a b l e . h"
i n c l u d e " S p a c e . h "
i n c l u d e " T h r e a d . h "
i n c l u d e "Unirerse h "
i n c l u d e " E x c e p t i o n . h"

, i n c l u d e " S c h e d u l e r h"

I p r o t e c t e d .
' J n l 7 e r se 1 T h r e a d
T h r e a d
s p a - .
r z c r p t 190

st:==
1 store

S s h t d u l t r
T h r c a d

' / I ' a n o t siire a b o u t t h L s

/ K a y 2 6 05 05 1987 /h/CPU h Page 3

v o i d s e : H s a p i p a c e (S p a c e * s p a c e I

1
v o i d s e t E r c t p t i o n (i n t v e c t o r . Exception e I (

I
v o r d s e t P r i v a t e S t o r e 1 Store * s t o z e I 1

t h i r - > c p u B e a p S p a c e = s p a c e

c p u T h i n q s [v e c t o r l = e .

c h i s - ~ c ? u P r l v a t c S t o r e = S C 3 r e

v o i d s e t C l o b a 1 S t ~ r e ~ Store s t o r - I
t h i s - > c p u C l o b a l S t o r e = StJre;

I
v o i d s e t S c h e d u l c r (s c h e d u l e r s c h e d u l e r 1 I

t
v o i d S e t T h r e a d T O D e l e t e I Thread t h r e a d 1 I

t

t h i s - > c p u S c h c d u l e r s c h e d u l e r ;

t h i s - > c ~ u T b s e a d T o D c l e t e = t h r e a d ;

/ * j * Othezs
I * / I unsicjned int id1 1 , I ! .

/ * j * Othezs
I * / I unsicjned int id1 1 , I ! .
I le~:ern CP'J * ne
I

4 e a d i f CP'J-h

8
I
e

S'deider 2VCi.h v 11 : 37/35/24 22:28.39 :usso Ex;, $
$Lock%:- 5

* /

* xodif-cari3n airtory
SLoq i5TS h.V $

* R e I l S l O n 11 1 87/05/14 22 28 09 TLllSO
* cnangcd order o f def:nes7

R ~ V I S L O ~ :1 0 87/05/21 1 5 : 5 3 32 russo
* c>nsaLe rnput and pr:vate 5 t ~) r e s

* ~ e v i s i o n I3 0 37/94/22 3 ' : 3 3 0 2 r11sso
* NPW spaces. Un:-ierses and CP'J ab!ects work. F l x a i l y *

* ~ e v : s ~ 3 n J 1 r 3 7 / 3 3 / 3 4 1 5 0 5 5 3 russo
* n.xl ' . ipl- threads and t:mer 12terrupts.

5?7~sian 3.3 97/03/29 1 5 29 5 3 rI1sio
* - ICY and -d~lete added for memory manaqcment h i s o c l a s s r n r e r e ' ~ p t s b'ork

* Revlrlon 7 3 87/33/25 12 46 16 Z U S S O
Fault handler hierirchy works 5 0 docs interprocessor scctsred interrupts

ReVls1on 1 . 1 87/03/17 14 0 7 50 russo
Initial : e v ~ s i o n ./

I ifndaf 3:Cs-n
ldef 123 S'lC3-h

ldef ;ne ?R(:NTF-S'JC 0
Idbfiae ZIL:T'd3EAD-SVC 1
ldcfine XILLThSX-SVC 2
ldef i n e STARTT'dBEAD-SYC 3

oRIGINAU PAGE IS
OF POOR QUALITyl

ay 2 6 05 0 5 1987 ../h/raultEandltr.h Page I

* FaultEand1er.h - Iault handler clasa definition
$'deader: FaultXandler h.v 11.1 07/05/14 05.07:57 KUSSJ Ere 5
$Locker: 5

* /

f Modification history:

Revision 11 1 87/05/74 35.17 57 russo
f adlusting tto reflect new ideas about fault handlers

R e v i s i o n 11.0 87/05/11 15:49:38 rua.0
* Console ~ n p u t and private stores.

* R e v i s i o n 10.0 87/04/21 07:31.13 russo
* N e v spaces, Universes and CPU obJacts v o r k . Fln4Llyl

* R e v i s i o ~ 9.1 97/04/04 15.05:21 russo
Kultiale threads and timer interrupts.

* ~ e ~ i ~ l o n a . 0 87/03/19 15:19:49 russo
* - aev and -delete added for memory management. Also. class Interrupts vork.

* R C I L S L O ~ 7.1 87/03/75 11.46-09 russo
Fault handler hierarchy works, so does interprocessor vectored interrupts.

Bev1sion 6 1 87/03/12 11:11:48 rUssO
* in;t:al r e v i s L o n

$Log: FauLtErndl%r.h.V 5

. I

ifndef lault'dandler-h
define FaultEandler-h

' t include 'Qb]cct.h" // parent class i I include 'Store .k"

c l a s s Space: / / include Space h uould cause a :lr=ular dcflnltron

/ *
* Fault Handler P a r e n t C l a s s This lust dafines Yhat the r e s t of the kernel

thinks a fault handler interface looks like. 1xdlv:dual derived Zypes
* can specify a l l kinds of r a y to handle the act'xal faults. a s Long a s
* they meet the ~ n t e r f a c c described nera The parent class implementation
* of fisFault current ly Ealti the processor.
* /

class FaultEandler . public O b] e c t {
pub1 ic :

t ;
virtual void fixEaulti space space. void address I ;

/ *
Fault handler to manage allocation/dcallocation from 1 store

f T h i s is about as simple as they get.
* /

class StoreHanager public Faultadndler 1

,

F a u l t h a n d l e r s u b c l a s s t o fill o n demand a E a u l t l n 9 p a 3 e
The a n l y t h i n g I : c u l l l y 1mplement.d h e r 9 is t h e c o d e r 3 a.:Ocate d f i d e
? a q e f z s m =he stare rid t h e n map I t i n t o t h e z u r r e n t t a s ~ s ladress ' * space a t t h e f a u l t i n g a d d r e s s I .,

ay 2 6 3 5 3 5 1 9 8 7 / h / P l l e h Page 1

* F i l e h the ? a r e n t tile class d e f i n i t i o n

$ H e a d e r F i l e h , o 11 0 9 7 / 0 5 / 1 1 1 5 4 9 4 4 russo Ex? 5
SLJCKcK $

* /

* r t o d i t i c a t i o n H i s t o r y

* Revision 11 .3 9 7 / 0 5 / 7 1 1 5 : 4 9 . 4 4 russo
SLoy: F i 1 e . h . v S

* C o n s o l e i n p u t and private s t o r e s .

* R c v i s i o n 1 0 0 3 7 / 0 4 / 2 2 07:13:26 russo
* Yew S p a c e s , U n i 7 e r s e r and CPU o b j e c t s work, P i n a l l y '

* R e v i s i o n 9 0 8 7 / 0 4 / 0 4 1 5 : 0 5 : 1 5 LUIIO
* K u l t i p l e t h r e a d s a n d t i m e r i n t e r r u p t s

* s c 7 1 s i o n 3 0 3 7 / 0 3 / 1 9 1 5 : 3 9 : 5 1 russo
* sew and - d e l e t e added for =cmozy managemen t . A l s o , c l a s s i n t a r r ' q t s work

* R ~ V I S : O ~ 7 o 87/03/75 is:is:ii ~ U S I O
+ o r o u q h t r e v i s x o n number up t o d a t e

* l e v i s i o n 1 1 87/03/15 15:15:01 russo
* I z i t r a l r e v i s ' o n
* /

IEndef File-h
d e f i n e F i l e - h

r n c l u d e ' 3 b] e c t . h " // p a r e n t allrr

,xt%:n 7016 B a l t i 1 .

'lass File : p u b l i c C b J e c t (
i ub l i c :

v l r t u a l i a t r e a d e c c o r d s l l o n 3 s t a r t l e c o r d . -,old * b u f f e r . i n t c o u n t 1 :
v i r t u a l :ne v r i t e E e c o r d s (l o n g S t a r t R e c O r d , -,old buffer. 1 n t c o u n t
v i r t u a l : n t q e c R e ~ o r d S i z e (I :

1 ' ; c - a s s KernoryF i l e : p u b l i c r i l e (

char * i o c a t l o n i
Lnt l e n g t h ;

prnoryci le (c h a r * l o c a t i o n , i n t l e n g t h I .

i n t r e a d R e c o r d s l l o n g s t a r t l e c o r d . Vold b u f f e r . i n t c o u n t I ,
i n t w r i t ~ R e c o r d S (l o n g r t a r t R e c o r d . Vold b u f t e r . int. c o u n t 1 ,

p u b l ic :

K e m o r y F i l e ~) ,

t .

l e n d i f F:le-h

8
U

I ,.
$iie%der F i l l e r 5 D 11 1 9 7 / 5 5 / 2 1 - 5 4 9 4: :usso ix? j
SLocrer $

./

* Modification history
$Log F i l l e r h v 5

Ecv1513n il 0 3 7 / 0 5 / 2 1 . j 4 9 4 7 russo
* Console input azd private i t o r c s

/ *

?UUllC
v i r t u a l void f i l l P a g e (void * CaultrnqAddress 1 L

faultingAddress j .
Printf(" F i l l a r : :fillPage,%xl C a l i 5 d l '\n

Bait(j ,

?UUllC
v i r t u a l void f i l l P a g e (void * CaultrnqAddress 1 L

faultingAddress j .
Printf(" F i l l a r : :fillPage,%xl C a l i 5 d l '\n

Bait(j ,

I .

,.
* F i l l e r to fiil a COFF section f r o m a COFF f:Le
*/ -

I include ' F i l e . h "

class COFFSectionFillCr public F i l l e r [
F l l t f i l e ;
void recr:onStart.
~ n t sectionlength; / / i n b y t e s .
l ong f i l e L x a t i a n : // the locatlon into the C5FP €:le to load from. I

ty 2 6 0 5 0 5 1987 / h / F i l l e r h Paqe 2

Ibl1c
C O F F S e c t i o ~ F i l l s r (F i l e L. f i l a void * start, int langth,

~COFFSecti~nFi1ler(1 ,
v o ~ d f i l l P t q m (void address j

lonq location I

endif Filler-h

1 .
S a s a d e r Lock h V 11 7 37/35/96 3 5 5 3 5 9 :us55 E x p 5
SLaCk-r 5 .,

/ *
* K o d i : i c a t l o n h r s t o r y

$Log Lock h:I 5
* R e v i S i o n 1 1 i 3 7 / 0 5 / 1 6 3 5 : j 3 : 5 ? r u s s o
* Made heldBy.4nother a n outline

, * p . ~ v ? s : o n :? 5 3 7 / 0 5 / 2 5 1 9 . 3 1 5 7 l o h n 5 t a n
' * Rdded 5 a i d B y A n o t h e s

I * R27is:on 11 5 3 7 / 0 5 / 2 5 1 8 . 1 8 : 3 ? :ohnsCan

! * X e v i i i o n 11 4 3 7 / 0 5 / 2 5 3 6 52.i' : o h n s t o n
~ * X r d c 5 e ~ 3 3 y n e I i o n - i n i r n r

8 .

* Added h r i d B y l 1

I .

5 7 / 1 5 / 2 5 j 6 - 2 2 - 5 9 lohoston

* O e 7 : s : o ~ ? 1 2 8 7 / 1 5 / 2 5 3 6 1 7 i 3 3ohr . s tJn
* Erred declaration Of T h l s C P U , ,

f R.-rii10n 11 1 8 7 / 0 5 / 1 5 1 5 . 5 7 - 5 8 l o h n o r o n - hdded heldByneg 1

* R e v i i i s n :1 0 8 7 / 0 5 / 2 1 1 5 49 5 3 russo
* CsnsoLe I n p u t a n d p r i v a t e s t a r e s

, * R ~ v i i i ~ n 13 3 3 7 / 0 5 / 1 1 2 0 5 7 . 1 8]onr rs tOn
* Remavtd L o c k . f r 3 e O b e c a u s e ~ t ' s con:.-srng

i t
' * R 6 7 1 5 3 3 n 13 0 3 7 / 0 1 / 2 2 3 ; . ? 3 . l C r . ~ s s o , * New S p a c e s , un17er5es and CPU 0 S : e c t s wosk, F l a a i i y '
I .

' * Revision 9 13 3 7 / 0 4 / 0 4 1 5 - 9 5 . 2 3 ruSsO
i * Multipl2 t h r r a d s a n d t i l e r I n K e r e u p r s .

I * R e v 1 5 1 0 n 3 T 8 7 / 0 1 / 0 1 0 6 1 5 3 2 russo
~ * :FRONT 1s s c r e w e d u p

! s e v i s i o n 3 5 9 7 / 0 4 / 0 2 1 2 ,32 3 5 l o h n s t o n

/ .
! f

' l i f n d c t Lack-h
, l d e f i = e 1c:k-h

i e x r e r n u n s i 7 n e d Th i sCPUO;

ray 2 6 3 5 5 7 1 3 8 7 /h/Lock h P a g e 7

:Liss Lock C
u n s i g n e d c h a r s t a t e :
u n s i q n c d i n t e r r u p t S t i t e .
u n s i g n e d hoidinqCPU;

: O C K O .

7 o i d acquire[1;
v o i d releaser) ;

rub1 IC

// The a c t u a i l o c k
// I n t e r r l l p C s o n f l a g .
// CPUID h o l d i n g l o c k if locked,

/ '
* T h e use of any of t h e r e w i l l probably c a u s e 5 r a c e s . b e w a r e
i

I n t h e l d (i

u n s i q n e d h e l d B y (I

~ n t he1dByPIei)

LnC h e l d B y A n o t h c r (I ;

: r e t u r n [t h i s -) s t a t e C OX1 I . ;

{ r e t u r n (t h i r - > h o l d i n g C P V) ; ;

{ r e t u r n [t h i r - > h o l d i n g C P U == 7h i sC?U(

I .

Iezdl f Lock-h

May 2 6 2 5 - 1 5 : 9 S i ./>./?;mer h P a g e I
!

. / e '

i .
;";ne:.h - ? e r - c ? v t:m*:.

I .
S H e a d e r . T i m e r h . 7 1 1 . 9 37/05/21 15.50 2 2 :115sa E X ? j

SLocKcr : 5

$Header Universe.h.v 11.9 87/05/21 1 5 : S O 2 5 russo Exp $
$Locker . $

* /

* X o d i f i c a t i o n E l s t o r y .

* 3 e v i s i o n 11.0 37/05/11 15 5 0 : 1 5 russo
f Console i n p u t and p r i v a t e s t o r e s .

l e v i s i o n 10.3 87/05/06 19 1 7 : 1 7 r u s s o
* added l o a d c o n t e x t r o r i 1 method .

Revision 1 0 . 1 87/04/11 1 0 : 3 8 : 0 5 russo
* added s p a c e c o n t a i n i n q me thod

/ *

SLoq: Universe h , v 5

I
I
I

1 ' * x o d i f i c a t i o n h i s t o r y
1 . S L O ~ Timer h r v 5
j * S e v i s i o n 11 0 87/35/11 15 50 2 2 r - 1 ~ ~ 5 ORIGINAL' PAGE IS

OF POOR QUALITY:

j a a t d s r Spa=- h 7 11 . - 3'/'35/26 2 1 4 1 ! 3 :usso E z p 5
jLockeZ S

1 * /

* M o d i f i c s t i o n h i s t o r y I

i (ev:s ion :1 7 97/05,16 -11 4 1 33 :usso
s ~ c g s p a c r h . r 5

f 7 7 ,

f Rev1510n ll 5 87/05,/15 0 5 . 0 4 50 =US30

chingad lime a € a l l o c % t e P o L n t e r T ~ b L e argument

B e - r i s i o n 11 5 37/35/25 17 36.25 russo
* sor:p no< :mpi-mentad.

f 3 e v i s i D n ? l 3 87/35/24 23 13 38 russo
* - L O T O %3rk o n nev a l l , ca : ;?n s t u f f

* ? = : . ~ s : s n 11 2 371'15/21 1 5 4 5 2 7 c u s s 0
f r rd:d a l l o c a r . i c n s t u f f and o t h e r p r i v a t e m e t h o d s

* l e v r s i o n 11 1 87/05/11 0 5 1 3 . 5 i USL LO
* added ?.er a l l o c a t e met:od definition

f R e v ~ s l o n 1 1 3 37/05/21 1 5 53.07 ruSS0
C o n s o l e r n p u t and p r i v a t e s t o r e s .

v i r t i l a l v o i d a a M d d r e s s i ! i
v i r t u a l i n t r s I n (v o i d v a d d r I ;
v i r t u a l Lnt i s V a l i d (v o l d v a d d r I ;

* R e v ~ s l o n L3.10 07/05/11 19.57 G 5 ruSS0
f added ; s i n : : I e T h o d f o r use to c h e c k w h s 3 t h e e a n addrsss : s n l n a 3 i . d 3 y
* a s p a c e

* R e v i s i o n : 5 8 37/04/22 16 5 6 14 russo
* f i l e d ? e r a e l s p a c e ConsCxuc to r args

* R e v i s i o n 10 2 87/14/22 1 5 13 38 r u s s o
s v ~ t : h c o n ~ t ~ u c t o r t a :ake b a s e ~ n d l e n g t h e i t h e r t h a n s t a r t a n d t n d

* ~ e ~ ~ ~ i o n 10 1 a 7 / 3 4 / 2 2 09 3 6 - 4 1 K U S ~ : .
r e n a m i n g from N*vSpacc

* ~ e v ~ s ~ o n 10 0 01/04/12 0 7 33 3 5 r u s I
* :lev S p i c a s . T n i v e r s e s and CPU o b : e c t s -.- : P i n a l l y '

R e v ~ s i o n 9 5 3?/04/14 20. 58 46 EUSSO
c r e a t e d K e r n e l s p a c e s u b c l a s s

* R e v i s i o n 9 1 9 7 / 0 4 / 1 1 0 4 . 5 0 2 4 r u s s o
i n i t i a l e r v i ~ i o n . i a e t u a l l y I r e v r i t e a f the o l d s t u f f 1

* /

i f n d e f space -h
d e f i n e Space-h

Kay 26 2 1 41 1987 / h /Spaca h P a g e 1

I i n c l l l d e ' O b l e c t . h " // p a r e n t =lass
l r n c l u d e "Lock h "
I i n c i ' a d e "VM. h "
f i n c l ' i d e ' S t a r e . h"
I i n c l u d e ' F a u l t F l a n d l e r . h "

': S p a c e - b a s e c l a s s .
* /

enum a l l o c a t i o n T y p e 1 p r c f e t c h . f a u l t I n 1 ;

class space : p u b l i c O b j e c t I

f r i e n d class universe ;

p r o t e c t e d :
Lock l o c k ;
S t o r e * S t o r e ;
701d * b a s e A d d r e r r .
I n t l e n q t h ;

u n s i q n e d 7TopPaqe;
I

s t r u m [
PTE Ci r i tLeveLPTE,
T T E sccondLeve lPTC;

; :able[2561.
h r u l t x a n d l e r t i u l t E a n d l e r i WEANOLERS I

v i r t u a l v o i d a l l o c a t e (u n r i q n a d i n t C o u n t , F a u l t K a n d l e r * b a n d l e r

v i r t u a l v o i d a l l o c a t e (v o i d b a s e . u n s i g n e d i n t : a u n t .
a l l o c a t i o n T y p e t y p e i ;

F a u l t x a n d l e r * h a n d l e r . a l l o c a t i o n T y p e type ; ,

v i r t u a l v o i d map(v o i d p d g e , v o l d * f r a m e I

F a u l t x a n d l e r * h a n d l e r (v o i d v a d d r I ,

,* t h e s e lire d e a d * /
v: rcua l v o i d a l l o c a t e , u n s i g n e d i n t p a g e c o u n t 1

DNGINAL PA & E fs
RE POOR QUALITY

itfay 2 5 5 5 : O S L 9 8 7 . / h / P x c e p t i o n . h Plqe 1

1'; E x c e p t i 0 n . h : e v e n t c l a s s d a s c r i p t i o n

S E e a d e r : I x c e p E l o n . h , r 11.0 8 7 / 0 5 / 2 1 1 5 : 9 9 : 3 5 rus.5 kxp 3
$ L o c k e r : 5

'/

* X o d i t i c a t i o n B i s t o r y .

* Revision 11.0 8 7 / 0 5 / a l 1 5 . 4 9 : 3 5 r u s s o
' Console i n p u c a n d p r i v a t e sc3zes.

Revision 10.13 8 7 / 0 5 / 0 1 11:01:06 r u s s o
r enamed f rom E o e n t . h

/ *

SLoy: E x c e p t i o n . h . 7 5

l i t n d e t E x c e p t i o n h 1 Ide f ine Excep t :on Ih

\ t I n c l u d e " 3 b l e c t h "
IincL'Ade " T h r e a d . h"

~ I i n c l u d e "Frime.h"

I t y p e d e f v o i d R a n d l e r l u n s t i o n J (s t r u c t Crane frame i

' c l a s s E s c c p t i m : p u b l i c O b j e c t !

// p a r e n t class

p r o t a c t c d :
publ i c

i .
v i r t ? ; i l void pos t (s t I u c t Frame * trame I

: l a s s S p r t e m E x c e p t i o n p u b l i c E x c e p t i o n (
p r o t e c t e d :

H l ~ d l e r F U n C t i O n h a n d l e r .
p - b l i c

f y s t e m l x c e p t l o n ~ B a n d l e r F u n c t i o n t h e n a n d l o r

v o i d p o s t (s t r u c c rrame :xame
I S f s t e m E x c e p t i o n (J

I :
c l a s s I n t e r r u p t E x c e p t ion p a n 1 IC
p r o t e c t e d

T h r e a d a w a i t e r ' .

r n t e r r u p t E x c q t i o n ()
' t n t e r r u p t E x c s p t i o n (I
void p o s t (s t r u c t P r i m e
701d a w a i t 0

l p u b l i c 1
' 1 i I c n d i f E x c e p t i o n - h

I

k x c e p t

f r a m e

.-on I

J i

lifnd$C SpaceList-h
ldefine Spacellst-h

tinelade '?b]ec: h
llnclude 'Space h "

:lass spacsListNodc p u b l i c Ob:cct '

Space * daiL.3;

spaceListNodc' Space * L I i
next = 0
l a s t = 0
d a t s = I .

I :

class SpacsList public ObJect 1
protected

ipaceListNode * Isad:
SpaceListNode * t a l l ;
spaCeLiitNode * i t e r a t o r ;
LOCK lock;

SpaceList(I ;
-spaceLirt1);
v ~ r t u a l void add(Space * spat. ; ,
v i r t u a l i n t remove(Space * s p a c e , .

pub1 IC :

~~

l a y 2 6 0 5 0 5 1 9 8 1 / h / s p a c t L i s t h Page 1

virtual int inquire1 space space I ,

virtual void startLteratlon(I
v i r t u a l space i t e r a t e N e x t (

t

lendif SpaceLlst-h

r 5 :
r 5 .
1 4 .
x3:
r2
rl.
10:
vCCtorNumber

~ n s r g n e d i n t p c
~ l ? . s~qned s h a z t mod; I * this 1mpl:crtly d%te:n:nes che .<a l ae o f t h e

,Ansigned s h o r t psr.
Sb r e g i s t e r . so w e d o n t s a v e s b . */

9 .

l e n d i f Brine-h

RRIGlNAL' PAGE IS
,OF POOR QUALITY

;Kay 2 6 3 5 0 5 1 9 8 7 . . / h / V e c t o r s . h P a g e 1

* ':ect?rs.h: v e c t o r numbers Cor processor t r a p s / i n t e r r ' ~ p t s

S E e i d e r : V e c t o r s . h , V 1 1 . 0 8 7 / 0 5 / 7 1 1 5 : 5 0 : 3 5 cuss0 E K p $
$ L o c k e r . 5

II;
* /
,t

K o d i f i c a t i o n K i s t o r y :

Scririon 1 1 . 0 9 7 / 0 5 / 1 1 1 5 . 5 0 : 3 5 r u s m
SLog: V e c t o r s . h . v 5

* C o n s a i e i n p u t and p r i v a t e stores

Revision 1 0 . 5 8 7 / 0 5 / 1 3 1 3 4 7 . 5 9 ~ o h n s t o n
Added d e f i n i t i o n of CPUCLASS-KM f o r a s s e r t i o n s , e t c .

S e v i s l o n L 0 . 4 8 7 / 0 5 / 1 3 1 3 : 4 5 : 4 9 l o h n s t o n
Changed CPUCLASS t o b e CPUCLASS-HALTID (0 1 a n d CPUCLASS-RUNNING (1)
Did c h i s so t h a t a h a l t e d CPU w o n ' t g e t c l a s s i n t e r x 3 p t S t h a t vi11

* n e v e r get s e r v i c e d .

R e v i s 1 0 n 1 0 . 3 5 7 / 0 1 / 3 0 16:15:26 l o h n s t o n
Added CPUCLASS d e f i n i t i o n .

* R e 7 i s i o n 10 1 8 7 / 0 4 / 1 8 0 9 . 1 8 : 0 6 russo
; n : t i a l r e v i s i o n

* /

I1:ndef V e c t o r s - h
I d e f - i e V e c t o r s - h

? r a p

I d e t i n e
(d e f i n e
I de t ine
l d e f i n e
I d e f i n e
l d e f :ne
(d e f i n e
t d e f i n e
l d e f i n e
I d e t i n c
ldet 1ne

. I

'<e ct or 3

NVI-Vector 0
NMI-Vectcr 1
AUT-V*ctcr 1
FPU-Vector
ILL-Vec to r 4
SVC -Y e c t o r 5
W Z - ' I e c t c r 6
FIG-Vec to r
a P T - v e c t o r 8
TXC-V*ctor 9
UNO V e c t o r 10

k d e f i n e Z s s ~ l l v E D - l l - V e c t o r
I d e t i n e RESERVED 11 V C C C O ~

I *
I n t e r r u p t V e c t o r s

* /
l d e f i n c TIMESLICE-Vector
l d e f i n e CONSOLE-Vector

/ * v a n - v e c t o r e d I n t e r r u p t * I
/ * Nan-"askab le i n t e r r u p t ' i /. A b o r t ,';M Error, T r i p * /
I * P l o a t i n q P o i n t i x c e p t i o n T r i p * /
/ * ILleqai I i s t r u c c i o n T r a p * /
/ * sdpervisar C a l l : c s i r u c c i o n T r a p
t. D i v i d e o y Zero T r a p * /
/ * T r a p o n F l a g * /
/ * B r e a k p o i n t T r a p * /
/ * T r a c e T r a p * /
/ * U n d e f i n e d I n s t r u c t L o n T r a p * /

11 /. R e s e r v e d * /

i 3 / * R e s e r v e d * /
1 4 / * R e s e r v e d * /
1 5 / * R e s e r v e d

12 / * R e 6 e r v e d * /

;6 / * T:me s l i c e Counre r I n t e r r u p t * /
1 7 / * C o n s o l e Input I n t e r r u p t * /

/

~y 26 I5 35 -987 /h/Schedul . r h P a g e 1

* S c h e d u 1 r r . h : 4 d i s p a r c h q u e u e d e s c r i p t i o n .

$ H e a d e r : Schedu1.r h , v 11.0 87/05/21 15:50:01 r u s s o Exp S
SLockar. $

* /

* K o d i f l c a t i o n Hisrorp.

R e v L a l o n li.0 07/05/11 L5:50:04
C o n s o l e ; n p u t a n d p r i v a t e s t o r e s .

* l e v i s i o n IO 1 87/05/12 17:11.04
+ added enclosing I i f d e f

R e v i s i o n 10.1 87/05/01 17:ll:lO
i n i t i a l r5vision

*/

i f n d c f S c h e d u l r r - h
d e f i n e S c h e d u l e r - h

i n c l u d e " T h r e a d h "

SLog: S c h e d u 1 e r . h . v 5

' l a s s S c h e d u l e r i

' p r o r e c t e d :
Lock iock.
Lnz n e r t r n .
I n t n e x r 9 u t .
Lnt maxThre a d s ,
T h r e i d * * ;deue.

!
pub1 IC:

Schedule:(; n t ma iThreads , :

v o i d add ; T h r e a d 1 ;
T h r e a d * removeNcxt(! ,

- s s h e d u l e r r I

I

a n d i f S c h e d u i e r - h

russo

r u s s o

r u s s o

t K o d i f i C d t l o n a l s t o r y

Q 3ev i s :on :1 2 37/95/16 06 46 01 Tuaso
I makP s t a c z 2 p a g e s l a r q e

$ L o g P r i v a r e M c m o r y h v 5

____________-____- - -~- - - - - - - - - - - - - -
4 s many p a q c s a s n e e d e d t o s t o r e
:he :%st of the pr2.rat .e atore
s t a t e i n f o r m a t i o n ? h e >f xenory
-p -3 x h e e n d 3 1 :he ~ 3 r - C P u
p r i v a t e a r e a is a v a i l d o l e

I C more t h m q s n e e d added t o chis
a r e a , add t h e m b e l o v t h e p r i v a t e
s t o r e and bump I t up h i g h e r

*___________________- - - - - - - - - - - - - - - -

: 1 The b e g i n n i n g of t h 3 p E l v Z t e
1 s t i r e s t a t e i n f o r o a t i o n

ORIGINAL PAGE IS
OF POOR QUALITY

< < - - End of p r i v a t e 'In

< < - - B a s e + 15 pages

a y 26 06 50 1987 / h / P r i v a t e n e r n o r y h P a g e 1

* T h e C P U o b i e c t .
* /
o n s t i n t mePage = 0 ;
t a t l c i n l i n e CPU meLocat :on(c h a r b a s e 1

r e t u r n ((CPO * I < b a s e + 0 I) ;

ORIGINAL PAGE IS
OF POOR QUALITY

1

f lay 2 6 5 6 50 : 9 8 7 /h/PrlvateMemory h Page 4
I

I
I
1

I
I
I
I
I
I
I
I
I
I
I
I
D
I
I
I
I
I
I

ORIGINAL PAGE IS
OF POOR QUALITY

Owner
Name Kernel M ain.c
Account 173
Site Dept. of Computer Science
Printer 24/300
S poo IDa te Thu May 28 10:22:50 1987

russo at m.c s.u iuced u

JobHeader on
JamResistance On
Language printer
formwidth 132
f ormsperpage 2
outlines on

IMAGEN Printing System, Version 2.2, Serial #86 : 2 : 85
Page images processed: 3
Pages printed: 3

Paper size (width, height) :

Document length:
2560, 3328

9776 bytes

* KerneLKl~ni
T h i s r 3 u t l n e s e t 5 up : L i n g s C h a t need ; n l t : a l i r e d before
t h e ?r>cessors a r e a l l let loose

$ K e a d e r K e r n e l X a i n c . 7 11.4 8 7 / 5 5 / 2 5 9 5 . 1 1 3 3 russo E x ? S
SLockcr 5

:I
R e v i s i o n K l s t o r y :

B e v i s i o n !1 4 8 7 , ' 0 5 / 2 5 3 5 1 7 . 3 3 russo
* o n l y d o d s e i e c t i v e debug p r 1 n t i n . j

* Rel :S ion 11 3 8 7 / 0 5 / 1 4 06 13 5 6 ;usso
t o o k o u t ':EW i n n o y i s q d e b u g

R e v i s i o n 11 1 3 7 / 0 5 / 2 1 15 5 1 1 0 ?us30
s v i t c h rays o f de1ete;ng t h r e a d s

* 3evision 11 3 8 7 / 0 5 / 2 1 15 5 4 1 3 russo
* Console l i p u c and p r L v a t + s t o z b s

R e v i s i o n 13 31 8 7 / 0 5 / 1 7 :1 I 4 2 5 russo
* k e e p de lc teQueue 3s a per-CPIJ xember

e e v l s i o n l o 2 4 9 7 / 0 5 / 1 3 2 0 : 2 9 . 5 6 russo
s p l i t out t h e rime slice t h r e a d code and d i d some a t h e r r e r r r i n q e m e n t r

Rev : s ion 1 0 . 2 0 8 7 / 0 5 / 1 3 0 6 0 7 : 2 3 ~ o h n s t o n
Added c r e a t i o n o f console t h r e a d .

* S e v i r i o n 10 17 8 7 / 0 5 / 1 1 1 7 . 1 5 2 5 :usso
: e . s t r , J c t a z t d t 3 be r .Jn by the Teras i n i t i a l t h r e a d Also s e x s us up

f t o use t h e sev s c h e d u l e r () member o f t h e CPU class.

* g e v : r i o n 10 0 3 7 / 0 4 / 2 2 0 7 3 8 1 6 russo
* New Spaces, Universes a n d CPU 0 b : e C t s w o r k , F i n a l l y '

R e v i s i o n 9 . 3 3 7 / 0 4 / 0 4 1 5 1 2 . 2 9 russo
M u l t i p l e t h r e a d s and t i m e r I n t e r r u p t s .

* R e v i s i o n 3 .) 3 7 / 0 3 / 2 9 1 5 . 3 3 . 4 5 russo
- new a n d - d e l e t e added for memory managemen t . A l s o . c lass i n t e r r u p t s v o r k .

F a u l t h a n d l e r h i e r a r c h y vorks. so d o e s : n t e r p r o c c + s o r v e c t o r e d interrupts

S L O T K e r n e 1 U a l n . c . v 5

R e o i s i o n 7 . 3 8 7 / 0 3 / 2 5 1 2 : 4 9 . 3 4 r U S 5 0

- R e v i s i o n 1.1 B 7 / 0 2 / a J 13:34:11 russo
Initial r e v i a i a n

* /

i n c l u d e " A s s e r t . h"
i n c l u d e "Debug h"
x n c l u d c ' m d - t u n r s b l e . h"
i n c l u d e "StOs=. h '

0)RIGINAf; PAGE: Is
OF POOR QUALITY

i n c l u d e " l i 1 e . h "
i n c l u d e ' F a u l t n a n d l e r . h"
i n c l u d e " S p a c e . h"
i n c l u d e ' T a s k . h"
i n c l u d e "Scheduler. h "
i n c l u d e ' E x c e p t i o n h"
i n c l u d e "Lock h "
i n c l u d e " U n i v e r s e h "
i n c l u d e "CPW. h"
i x l u d e " V e c t o r s h"

Global E x c e p t i o n h a n d l e r s .
*/
y s t e m C x c e p t i o n ' JMExcept ion(AIITTrap I ;
x t e r n Vo id ABTTrap(StTUCt C I 1 m e I :

x t e r n v o i d sVCTrap(s t r u c t m a r e I ;
y s t e m E x c c p t i o n SVCExcep t ion (SVCTrap 1 ;

n t e r r u p t E x c e p t i o n ConsoleInterruptExsept~on,

P I i s c e 1 1 a n e o ~ s 7ariabl*s.
*/
t a t i c i n t s e t u p n o n e = 0 ;
t a t i c Lock s e t u p l o c k ;
t a t i c S c h e d u l e s rung; // r u n q u e u e for t h i s kernel

t a t i e i n t C o n s o l e T h r e a d b u i l t = 0;
t d t i c Lock C o n r o l e T h r e a d t o c k :

0 i d
e r n e l M a i n (u n s i g n e d i n t I D)

I n i t i a l sanity A s s e r t i o n s a n d Debugg ing
. I

A s sest I
Debug (
A s s e r t 1
A s s e r t (
A s s e r t (
A s s a l t (
A s s e r t (
A s s e r t (
A s s e r t (
A s s e r t 1

A s s e r t ,
A s s e r t 1

Me ! = 0 \ ;

I D == U e - > i d (l I;
M a - > u n i V e r s e (I ' = 0 I ,
Me->heapSpac*(l ' = 0 I;
U e - > c u r r e n t T h r * a d () * = 0) ;
n e - > i d l e T h r * a d (1 ' = 0 1 ;
M e - > c u r r e n t T h r c a d (1 == n e - > i d l e T h r c a d (I 1 .
M s - > r c h s d u l e r ~ l == 0 I;
M e - > t h r e a d T o D e l e t e () == 0) i

~ e - > p r i v a t c S t o r e (1 ' = 0 I;
M e - > q l o b a l S t O r e (l ' 5 0 1 :

" P r o c e s s o r t x h a s l o i n e d t h e kernel (I D = l x) \ n " . U c - > l d () , I D I ;

e x t e r n i n t I n t e r r u p t s D i r a b l e d O
A s s e r t (I n t e r r u p t s D i r a b l e d (1 I ;

I.

* Instal; t h e q l c b a l (:?man a m n ~ n g i;i :?'Is ezscuZ:nq chis k s - n e i)
* e r c e p t r o n handlers The ABT h i n d l 5 r 1s sspccllliy i m p o r t a n t s i n c e
* :t vili , 1 1 3 ~ ?age faults c o o c c u r ~ n d be l i n d l e d
. I

Deoug: 'KernelMaln I n s t a l l i n g global e r c ? p t r o n s \ n ') ,

M e - ~ s e t E x c e p t i o n (SVC-7cct3r . i s V c E x c e ~ t i o n
M e - > s e t E x c e p t l o n ! CONSOLE-?Iector. C C o n ~ o l e : n t ~ r r u p t E x 2 c p - : o n 1 ,

/ *

M e - , s e t E r c e p t l > e i ABT-VCCtOK, i 'JMESceptiOZ I .

* I n s t a l l t h e l o c a l (p r i v a t e j e s c e p t i o n i a n d l e r i

f s u i l d 1 s t a c k for t h e c l i c k t h K e 3 d . t h e n c3nst:Uct a n d d i s p a t c h I t

' I
I t rill build. i n s t a l l a n d a w a i t t h e time s i l c e ex :ep t ron

Oebug("Yerne lMain : B u i l d i n g k e r n e l c l o c k t h r e a d \ n ' I .
e x t e r n v 3 i d 1wit:hTol T h r e a d * 1 :
ester2 v 3 - 1 * ? e e - e l T O r ~ a d S t I c I C A l l O = I t C r (11t I
* s t e r n ?a;d T~:he:i 1-t 1

I n t - s t i c k = (:nt * / K a r n e l T h i i r d S t d c b X l l ~ ~ l ~ ~ r 1 I

h S 5 e K : Stack 'I 3) ,

T h r e a d * clock = new I n t e r r u p t T h r e f d (I P F ' I I T i c k e r stact, 3 0 3 1 ,
J e b u g ! " K e r n e l X d l 2 . c l o c k :hecad t x (s t a c b = ~ : c i : n ' . c13ck S t a c k) .

A s s e r t , :lock ' = 3 1 .

SWi tchTo(c l o c k) ,
Debug(" K e r n e l l a i n c l o c k d i s p a t c h : c t u r n e d \ n " j .
A s s e r t 1 M e - > r d () == I D I ;

,*
* l u l l d 1 s t a c k tor t h e c o n s o l e t h r s a d :?.en COn5tTUCt and dispatch it
' I

C3nsol tTh:eidL3cL require(j ;

if1 ' COniOLeTtrCadBuiLt 1 (
/ *

* I f were t h e one 3 o i n g t 3 b u i l d it 1nd:cdte so a n d l e t
* e v e r y o n e e l s e p r o c c e d e s l n c 5 t h e r e 1 5 no KCISOn f o r t hem

* /
* t O V d i t f O E U S .

l o n s o l e T h r e i d B u i l t = 1.
Conso leThreadLack r e l e a s e (> ,

I I Debug(' ' K e r n e l K l l n : B u i l d i n g c o n s o l e t h r e a d \ n ') ,

I
S t a c k = I l n t * I K e r n e l T h K e ~ d S t ~ c k A l l a ~ ~ ~ ~ r ~ 1 I ,
A s s e r t (s t a c k I = !I) ;

e s t e r n s o l d C o n r o l e T h r e i d E n t r ~ i Lnt 1 ,
T h r e a d C O n S O l e = n e v I n t e r r u p t T h r e a d (

Debuq(Kerne lKa in : console t h r e a d ts I s t a c k = f x j \ . n " . c i n s o l e ,

I
(P W I C o n s o l e T h r e a d E n t r y , s t a c k . 0 . 9 , 3 i ;

s t a c k) ,
A s s e r t (C O ~ S O l e * = 0 t .

I

ay 2 0 10:02 1987 KeLnClKa1n.C P a g e 1

S w i t c h T o (console) ;
Debug("KernelKAln- c o n s o l e d i s p a t c h r e r u r n e d \ n " 1 ;
A s s e r t (K e -) i d (i == I D I,

I
e l s e [

)
C o n s o l e T h r e i d L o c k relcsse(1

/ *
Check t o see if t h e s e t u p p o r t i o n of t h e k e r n e l h a s been d o n e b y
301eOne e1SC and l f not d o i t . OtheLYlSe w a i t f o r t h e m t o f i n i s h

* t h e n c o n t i n u e an.
* /

s e t u p l o c k a c q u i r e (1 ;
I f (' s e t u p D o n e 1 [

Dcbuq l "KernelKan: Doing k e r n e l s e t u p \ n ") ;
SctupDone = 1;

': I n l t l a l i z e t h e r u n q u e u e s c h e d u l e r

r u n 9 = nev S c h e d u l e r (1 0 0) : / / h o l d 1 0 0 threads. DEFINE TEIS" '
Debuq l ~ernelKain: r u n 9 = tcx\n". r u n 9 1 ,

* /

A s s e r t (run0 * = 0) ;

/ *
* C r e l c . th. i n i t i a l s p a c e
* /

C P I I P r i n t f (" r e r n e l n a i n : C r e a t i n g & n i t s p a c e from \ x \ n " ,

S p a c e * r n i t i a l s p * c e = xew S p a c e (M e -) g l o b a l S t o r ~ ~)

Debug(" K e r n e l K a l n . 1 n i t i a l S p a c e = s x \ , n ' r n i t i a l s p a c e , ,
A s s e r t (i n i t i a l s p a c e ' 5 9)

/ *

Me-)q loba lS to rch , b :

i s o l d * I TASKLOIACDR. TASKHICHADCR - ?ASZL3WADDR I ,

C r e a t e t h e File to load t h e s p a c e from
* /

e x t e r n c h a r I n i t i a l c o d e l ! ,
C X t e K n InC I n i t i a l C o d e S i z e :

Debug1 " K e r n e l K a i n : C r c a t i n q t h e i n i t i a l s p a c e ' s COFF f i l e \ n ") ,
P i l e l n i t i a l l i l e = new K e m o r y F ~ l e l I n ~ t i d l c o d e ,

Debug(" K e r n e l K a l n : i n l t i a l F i l e = k q n " I i n i t i a l F 1 1 e I .
I n i t i a l c o d e s i z e I :

ASIOKtl 1 n l t l a l P l l C ' = 5 1 ,

': I n l t l d l l Z C t h e S p a c e f r o m t h e COFF i m a g e O f t h e i n i t i a l T a s k
* i n t h e file c r e a t e d r b o v e .
* /

extern K P F J SetupSpaceFromCOFFImage(S p a c e * . File * 1 ,

Debug("Kernelnain i n i t i a l i z i n g s p a c e from t h e COFF I m a g e \ n " ! ,

I
I
I
I
I
I
I
1
I
1
I
I
I
I
I
I
I
I
I

I
I

I '
* prow :hat all t h e x n i t i a l interrupt c h r e r d r have b e e n d i s p a t c h e d
t a n d s t a r t e d . rurn o n r n t e r r ' ~ p t 5 . se t t h e s c h e d u l e r member of t h e

CTU O D ~ ~ C C to the c e r n e l s s c h e d u l e r a n d b e 3 1 n round robin s c h e d u l i n q
* /

e x - e z n void E 3 i b l e I n t e r r ~ J p t s () .

3ehu;, "KerneLMd:n enab1:nq ;n :5 r rn? t s \ l " '

O x r b i + I n ~ e r r u p t s I ,
H e -) i e t S c h + d u l e r < run0 I .

/ *
K%ep l o o p i n g r-aovinq t h i n g s f r o m t h e schedular a n d d l s p a t c t i n g
them

* /
~ab rcqc ' E e r n e l t f a i n : e n t e r i n q i d l e l o o p \ n " 1
i i h i l 5 i 1 I

e s C e r n i n t I n t e r r u p t s E n d b l C d (1 ,
A S i C r K (I n t e r r u p t s s n a b l e d i I I :

T h r e a d a 2 h r e r d :
A s s e r t , X e - > s c h e d u l e r i I ' = 0 1 ;
Assert(% e - ~ t h r e i d T o D c l e t e !) == I ::
v h i l e ((a r h r e a d = ne-rscheduler~)->removeNert(1) == 0 j ,

C P ' J P r i n t f (" I d l e (1 : I T h r e a d = t r \n". a T h r e i d 1;
S v l t c h T o (& T h r e a d I ;
C P U P r i n t t (" Id le (; EITURNED. ChtckLnq f o r T h r e a d s t o d e l * t e \ n ' ' 1 ;
Assert(H e - > i d () == ID 1 ;
~sserc(H e - > c u r r c n t T h r s a d (I =I K e - > i d l e T h r a i d i 1 , ;

QRfGNAt' PAGE rs
OF POOR QUALITY

i y 2 8 10 01 1987 Zernell4aln.c P a g e 6

/ *
Check t o see if t h e r e i s a T h r e a d t o d e l e t e

* I

i f (* T h r e a d = M e - > t h r e a d T o D e l e t e () 1 ' = 0 I
CPUPrinKf I "KernelKain d e l e t i n g i x \ n " , d t h r e d d)
d c l 9 t e x - h r e a d .
H e - ~ s e t T h r e a d T o D e l e t e 1 0 I ,

1
t

T h e res t o f t h i s tile i s o n l y h e r e Cor t e s t i n g .
f i t belongs 111 and v i 1 1 b e moved t o , sOmewheL8 else in t h e k e r n e l when

it IS c o m p l e t e d
* /

S u i l d 1 s t a c k for a k e r n e l , i n t e r r u p t) thread The s t a c k is a l l o c a t e d
v i r t u a l l y in t h e p r o c e s s o r s current h e a p s p a c e a n d p h y s i c a l l y f r o m
K e - > q l o b a l S t o r e f) T h e p o i n t e r r e t u r n e d is to t h e start bottom1 o f t h e s t a c k
T h i s is a c t u a l 1 7 t h e hxgh end of t h e memory r e g i o n a l l o c a t e d

f F I X T H I S T O ALLOCATC "SAWOWICE" VIRTUAL PACES TO CATCE O V E R / U N D E R P L O W '
* AN0 TO USE TAL PROPCR STORE
*/
a i d f
e r n e l r h r c a d S t ~ c * A l l o c l e o r (i n t numberOfPaqes I

Sebug! ' K e r n e l S t a c M 1 l o c a t o r (kd) \ n " , numberOfPages ! ,
A s s e r t (ne->qlobalstore(l ' = 0 I ;
h s s e r t ~ ~ c - > h e a p S p a c e i 1 ' = J I :

c h a r stack = (c h a r *) Mc- ,heapspace i) - > l l l o c a t c (numberOfPage r , :
vo;d * p s t a c k = t f e - r g l o b a l S t o r e (j - > a l l o c a t e i nunbe rUtP3qes I i
A s s e r t (v s c a c k ' = 0 I :
Assert(p r t a c k ' = 0 I ;
Me->heapSpace () - > m a p (v s t a c k , p s t a c k . numbcrOfPaqes I ;

r%turn(r s K a c k c (nunberOfPaqes((PACESR1~T) I ;

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Owner
Name
Account
Site
Printer
SpoolDate

russo at m.cs.uiuc.edu
St0re.c
173
Dept. of Computer Science
24/300
Thu May 28 10:33:39 1987

JobHeader on
JamResistance On
Language printer
formwidth 132
formsperpage 2
outlines on

IMAGEN Printing System, Version 2.2, Serial #86 : 2 : 85
Page images processed: 2
Pages printed: 2

Paper size (width, height) :

Document length:
2560, 3328

5930 bytes

I
II
I
I
I
I
6
I
E
I
I

I
I
'I

Y
1
I
I

n

/ *
* S:=ri c - ? ' l y s . c a l n e a o ~ y r i ; a c i r r o n

$Heid.: s t o r e c 7 11 1) 9-/35/21 i5 5 7 18 r 1 s s o E < p 5
SLockrr 5

* /

Re71SiOn H i s t o r y

R e v i s i o n 11 0 07/05/11 15 57 10 russo
f C ~ n r ~ i e - n p u t r n d p r i v a t e 3 t O r e S

/ * , ,

$Log m o r e c v 5

i f R e v i r i o n 1 O 5 87/05/15 05:55'59 l o h n s t o n

' R ~ v i j i o n 1 0 3 97/05/14 2 1 : 5 6 - 0 9] o h n r t o n
1 E o p e f s l y f l r e d some s t u f f .
I C o t t d h u n t a r o u n d and f i n d 111 t h e p l a c e s I b r a k e it
I .

F i x e d ; a l c u l a t l o n O C S t o C e s t a t e p a g e c o u n t i n C 0 ~ 5 t : U ~ t O ~

Changed the : n t e r i a c e . t o o

* R a s i i i a n 1'2 0 97/14/21 1 7 . 4 3 3 1 1115.30
* Nev S p a c e s . Universbs and CPU 9 o : e c t s w o r k . F i n a l l y '

* Re.i i j1oa 9 3 3 i / O 4 / 0 4 1 5 1 7 36 russo
* K u l t : ? i 5 t a r e a d s and t i m e s i n t e r r u p t s .

R C ? ~ S X R a o 87/01/29 15.37 4 4 USS SO
n e w and - d e l e t e added for memory management A l s o . C l a s i i n t e r r u p t s work

Re71310n 7 0 97/03/25 12 5 1 : 5 5 r u s s o
* Fault h a n d i p r h L e r a r c h y works, 50 does i n t t r p r o c c s s o r ? w t o r P d I n t e r r u p t s .

E e v ~ 3 : o s I 1 87/02/23 10 2 0 ~ 2 5 r u s s o
: n i t l a 1 ze.,Lzion

. I

I i n c l - d e ' m d - c o n s t i n t s . h "
I I n c l u d e ' . A s s ~ T t . h"
I l n c l v d c " 5 e b u g h"
I i n c l u d e ":ock h"
l i n c l u d s " S t o e e h"
) i n c l u d e ' "3X.2"

s t o r e . ~ t o r e (u n s i g n e d b a s e P a g c , u n s i g n e d p a g e c o u n t , unsiqn.d * s t a t e a a r e P a g e)

I
/ *

D e b u g g i n g and e n t r y a s s e ~ t l o u s .
* /

o e b u g r " S t o r e : . s t o r e (l i x . r r . ' t x l \ n " . b a s e P a g e . p a g e c o u n t . s t a t e B a s e P i g e) .
A s s e r t , s t a t e 0 d s e P a g e 1 .
Debugi " S t o r e : : S t o r e : + s t d t e B a s e P a g e : % x \ n " , * s t a t r s s s c P a g e) ;
Assert(p a g e c o u n t ' = 0 i ;
Assert(t h i s == 0 1 ,

1 .

* F i g u r e o u t o u r s ~ z e s , e t c .
* /

nay 19

1

S t o r e :
(

1 ,.

L O 9 2 1 9 8 7 S t 0 r e . c P a g e 1

u n s i g n e d p a q e s P e r S e t E n t r y = 8 s i z e o f (u n s i g n e d
u n s i g n e d s e t c n t r y c o u n t = (p a g e c o u n t + (p a y e s P e r S - c E n t r y - 1 1 1 /

p a g e s P e x S e t E n t r y ;
A s s e r t : (s e t l n t r y c o u n t p a g e s P e s S e t E n t r y I > = p a y s c o u n t) ;
u n s i g n e d s t a t e 0 y t e C o u n t = (sizeot(S t o r e) - s i z e o f (u n s r g n e d i) +

i t a t e a y t e c o u n t = PaqeCeilLnqg(r t ~ t t 8 y t e C o u n t i ;
u n s i g n e d S t a t e P a g e c o u n t = a d d r T o P a g e ((c h a r 1 Sta t eBy teCOUnt) ;

,/ .
(s e t s n t r y c o u n t s i z e o f (u n s i g n e d) 1 ,

a l l o c a t e o u r s e l f
* /

t h i s = (S t o r e 9) (* s t a t e B a s e P a g e PAGCSIZI) ;
' S t a t s B a s m P a g e += s t a t e P a g e C o u n t i
Debug (" s t o r . ~ ~ S t o r a : t h i s : t x (*d p r q e s) \ n " , t h i s . s t a t e P a g e C o u n t I ;

/ *
Initialize t h e S t o r e s t a t e information

* /
: h i s - > b a s c P i g e = b a s a P a g e ;
t h i s - > h i 3 h P a g e = b a s e P a g e + pag8Coun t .
t h : s - > f r e e P a g e C o u n t = pageCoun t ;
this-) s e t E n t r g C o u n t = s e t E n t r y C o u m t ;
t h r s - > p i g e s P e s S e r E n t r i = p a g m s P e r S e t L n t r y :
for (u n s i g n e d 1 I 0 : 1 < t h i s - > s e t E n t r y C o u n t . It+ 1

t h i s - > s e t [i 1 = 0:
Debug(" S t o r o : : S t o r m : basePrqm: ax , h i g h p a g e : I x , f r e e P a g e C o u n t : %x\n",

t h i s - > b a s a P a q e , t h i s - > h l q h P a g e , t h is- > CreeP lgeCoun t ;

Debug("Store: ; S t o r e : s e t L n t r p C o u n t ; tx . p a g e s P e r S e t E n t r y . bx\n",
t h i s - > s e t c n t r y C o u n t . t h ~ s - , p a q e r P e r S e t E n t r y) ;

- s tore ;)

e x t e r n V o i d B a l e () :

c h i r - > l o c k . a c q u l r e ! I :
P a n i c P r i n t L (" S t o r e : : - S t o r e : DCSTKDCTOR CALLED on t x \ n " , t h i s 1;
t h i s = 0;
m a l t () ;

S t o r e n e x t r r e e

* K e t u r n t h e F i r s t Cree page a t t e r or i a c l u d i n g t h e s p e c i f i e d page
K e t u r n t h i s - > h i g h P a g e L C none Yere f o u n d

I'

u n s i g n e d
S t o r e ' n c x t F r e e (u n s i g n e d page) ,

A s s e r t (page >= t h i r - > b a s e P a g s) ;
A s s e r t (p a g e < t h i s - > h i q h P a g e) ,
w h i l e (page < t h l r - > h l g h P a g e I

it (' t h i s - > m a r k e d f page))

* Store c o n t i q u o u s
ORIGINAL PAGE IS

: R e t Y r n the number 3f c o n t r g u z u s f r e e ? a y ' s s t a s t : n q it t h e s p e c i t - e d p a g e
* Look for n o pore t h a n t h e number 3 f p a q e s s j e c i f i e d
* /

OF POOR QUALITY

i n s i g n e d
i t o r e : c o n t i q s o u s ; uns;qned page. u n s i q n a d p a q e c ~ u n t)

: h a r *
S t o r e : . a l l o c a t e (u n s i g n e d p a g e c o u n t

/ *
F I T S ~ f l z search t o r nilmbes o f c o n t r g u o u s ?,?e5 requ%s:ed.

Debuq, ' S t o r e . a l i o c a t e i d I t h i s = \ x \ n ' ' p1qPC3ua: t h i s j ;

A s s e r t (;aj-eC=un: ' = 0) .

thrs-,lock ~ c q u l : e !
u n s i g n e d basaPage = t h i S - > b d i e ? a g e
u n s i g n e d f r eeP3qeCoun t = 3 ,
w h i l e ! baseP3qa < t h i s -) h i g h P a g e I (

.,

b a s e P r q e = t h i s -) n e X t T r e e (b r s e P l q e I ,
t r e+? , ?ecoun t = : h i s -) c o n t i g u o u s , b a s e P l q e . p a q a c o u n t I .
:f ' CreaPaqeCount = = p a g e c o u n t I (

. A s s e r t , t h z s - > i n S t a r e . b a s e P a q e I , ,
' ans igned p a g e = b a s e P i j e .
f o r r u n s i g n e d i = 0 ; I < f r e e P a g e C o u n t . I++ p a g e + + i

c h a r * a d d r = : c h a r *) p i g e r o A d d r i base?ige j ,
h r r e r t i t h l S - > l n S t J z e I a d d r I I .
t h i s -) l o c k . r e l e d 3 e : I .
Debug(" S t o r + : a l l o c a t e k s \ n " , a d d r I ,

return I a d d r i ,

t h l s -) m a r k i p a q e I .

I
b a s e ? a g e += f r e e T i g e C o u n t .

I
t h l s - > l o c k . r e l e a s e (I
C ? U P r i n t f (" S t o r e a l loc? . t e FAILED 'this = * X l \ n ' . this 1 :

by 1 8 :0:01 1987 Sto:e D ?age 4

r e t u r n (0 1 ,

> i d
Lore: . d e a l l o c a t e (char b a s e A d d r . u n s i g n e d p a g e c o u n t ;

Debug("Store: d e & l l o c a t e (% x . % d) ' t h i o = t x \ n " .
b a s e A d d r . p a g e c o u n t , t h i s j ,

A s s e r t ((u n s L y n e d) b a r e l d d r k PACESIZE 1 == 3 1 ,
u n s i g n e d b a s e P a g e = a d d r T o P a q e i b a s e A d d r I:
A s s e r t (t h i s -) r n S t o r e (b a s e p a g e , I .
A s s e r t (t h i S - > 1 n S t O r e ((b a s e p a g e + p a g e c o u n t j - 1 1 I;
t h i s -) l o C k acquire(1 :
w h i l e (pagecount-- 1 I

thLr->uamark(b a r a P a g e 1 ;
b a s e P a q c r c ;

t
t h i s - ~ l o c k . r e l e a r c (1 ,

3 id
tore..reserve(unsigned b a s e l a g e . u n s i g n e d p a g e c o u n t

Debug(

A s s e r t (
A s s e r t (
A s s e r t (

"store : raaerve(%x. k d l : t h i s = \ x \ n " .
b a s e P a q e . p a g e c o u n t . t h i s 1 ,
t h i s - > i n S t o r e (b a s e p a g e I) :
p a g e c o u n t # = 0 1 ;
t h i a - > i n S t o E e ((b a s e P a q e t p a g e c o u n t

t h i s - > n a r k (b a r e l a g e 1 ,
b a s e P a q c t r ,

t h i i - , l o c k . a c q u l r e () ;
v h i l e (pagecount-- 1 (

I
t h i s - > l o C k . r e l C l l e (1;

- 1 1 1 ;

Owner
Name
Account
Site
Printer
SpoolDate

JobHeader on
JamResistance On
Language printer
formwidth 132
formsperpage 2
outlines on

russo at m.cs.uiuc.edu
Space.c
173
Dept. of Computer Science
24/300
Thu May 28 10:36:24 1987

IMAGEN Printing System, Version 2.
Page images processed: 7
Pages printed: 7

Paper size (width, height) :

Document length:
2560, 3328

19756 bytes

2, Serial #86:2:85

j a e a d e ~ S p a c 5 . c ; ~ 11 1 1 ? : r 0 5 ! 2 6 0: :5 4 1 ;ohnston E x p 5
SLocter ;usso 5

*/

nodification ! i i s t o r y .

Revision 11 11 37/05i26 1 7 08:41 Johnston
* DeDugqing a f t .

Revision I 1 10 a1/05/26 3 5 : 5 1 : 2 8 russo
changed argument to alloCatePOinterTabie to b e the page n o t the llIndes

~evision 11.9 37/05/25 1 7 . 3 1 3 5 :usso
* sorry no t implemented.

S L 0 9 : space.c,v 5

* Revision 1 1 . 3 37/i5/25 1 7 . 3 3 5 3 :LLSO
(I updat~zg C h e rest s: t h e meth3ds

f Rev:sron '1.6 37/55/25 05.10.33 r u l s o
f more jebugglrzg to track down 1 panic

f RevisLon li I 31/05/24 17.36 22 ecsso
added m r s s L 3 q Kerxelspace nethid

Beoirron 11 2 87/05/24 1 6 . 4 7 13 r u s s o
fioishinq tip ncv allocation stuff

* RevisLon 1 1 0 87/05/21 15-57 09 r c s lo
f consale input and pr;vate stores

5evis:on 11 21 57/05/15 :5.14:30 Johnston
Fixed store-)deal:ocace parameters.

* Revision 13 2 9 87/05/14 2 0 : 0 E : 1 5 :usso
* added 1 s I n method to space cliss to zest if a n address IS managed by the
* SpbCe

Rerlrion L0.8 8 7 / 0 4 / 2 2 21:11 3 1 r U s S O
leave Fiult3andler[Ol empty so un-handled paqes return a 0 fault handler.

ORIGINAL PA%E IS
OF POOR QUALITX

* Bevision 10 0 87/04/21 0 7 : 4 3 17 :usso
New Spaces, Universes and CPU oblectr xork. Pinally'

Revision 3 1 87/04/13 04.50.57 rUasO
initial revision.

- /

I include "Debug. h"
I include 'hssert. h"
I include "I?.(. h"
lincludc 'store h"
t include ''Space h"
linclude "FaultRand1er.h"

ay l a 11 03 1 9 8 7 Sp1ce.c Pig. 1

include 'CPU.h"

Space constructor

Arouments
store used to allocate pyhrlcal memory for the pointer table state

b a s e the starting address of the space
length the length of the space

informatlon from

*/

pace' Space(Store store. void 4 base, int length)

'I Entry debugging and a s s e r t i o n s
* (Check for proper rliqnments of the Sprce boundries I
* /

3ebuq("space: :Space(store: \I bas.: \ x , length: * X I : this %X\n",

Assert(this ' = 0 I;
A s s e r t (store I = 0 I ;
Assert1 ((unsigned) base L Oxffff) == 0 1 ;
Assert1 ([unsiqnedl((char * I bas. + lenqth I C OXfffC I 5 0 0 I ;

i .

storm. base, l e n g t h , t h i s I ;

set the space boundary instance variables.
* /

this->baseAddress - base;
this->lenqth = length;
thrs->vTopPiqe = addrToPaqe(base 1 ;

/ *
Initialize the pointer table information kept f o r the space

*/
fori lat 1 = 0; 1 < 1 5 6 ; i++) {

this->tableIil. rccondLereLPTE = 0:
thir-)table[i:.firstLevelPTE = (PTEI 0;

this->store = store;

': Initiilxre t h e space' fault handler table

f o r (1 = 0; 1 < IUXHAHDLEES. le+ i (

!

' I

this-~fiultEandlerIi] = 0

Space destructor. Boy does t h i s need w o r k '
*/
:pace: -space(i

CPUPrintf("space: :-space. this=rs\n". this) ;
Assert1 I this->lock heldr)) .

* s p a c e c s p a c e :Lass r m p L s n ? e n : i t i o n

jEta3er S p a c e c v 11 1 1 57/05/26 07 .8 41 :ohnston Esp $
jLocxer zusso 5

'/

* nod1fication mistory
s ~ o q S p a c - c.v 5

Revision 11 11 87/05/16 0 7 08 4 1 yohnstan
Debugqlng 3 f f

~ e v l s ~ o n 1 1 10 97/05/16 3 5 : 0 3 . 2 9 zusso
* changad argument :o al~ocatePointerTabie t o be the page .lot the 1lInde.x

RevisLon 1 1 9 97/05/25 17.37 3 5 = U S 3 0
sorry n o t implemented.

* Revision 11 3 97/05/25 1 7 . 3 3 5 3 i c s i o
* upbrtinj the z%st a f the nethads

* S+-I:SLO~ 11 5 3 7 / 3 5 / 1 5 0 5 - 4 3 31 r u s i o
* m o r e 3ebujgir.q t 3 trick down 1 panic

* ReY:SLon 11 4 87/15/24 17:,16 22 :USSO
* added m i s s : n y Kesaelspacc m e t l o d .

f xev.1910n I1 2 97/05/24 1 6 . 4 7 13 r u s s o
* finishing ,up new allocation stuff

RevIsion 11 0 87/05/21 15.57 09 rtsso
* Console input and p r i v a c e stores

* 9evis:on :I 21 37/05/15 ? 5 . 1 1 : 1 0 2ohnston
* Fixed Storc->deallocace parameters.

* Revision 1'1 20 07/05/14 20 15:15 rusio
added i s 1 n method to space class to test if an addzesr 18 managed by the
space

B e v i ~ i o n 10 8 97/04/11 21.11 3 3 T Y S S O
* l e s v e EiultXandlerL01 empty so un-handled p a q e s :etUsn I 0 fault handler

Revision 10 0 07/04/22 07:43 17 russo
New S p a c e s , Universes dnd CPU ob]ects work. Finally'

* Revision 3 1 31/14/13 04 50.57 russo
f initial revision.
* ,/

inciude 'Debug. h"
Include ' A s s e r t . h"
include ' ' ' In . h"
inciude 'Store h"
lac 1 Ude " S p a c e . h"
include "Faultiiandler h"

sy a 8 10 03 1987 space c Page I

includo C P U h"

* space constructor

Arguments
store used to allocate eyhsical memory for tha pointer table state ..

information from.
b a s e . the starting address of the space
lenqch. the length of the space

'/

pace..Space(Store store, void base. int length I

/ *
* Entry debugging and assertions
* (Check for proper alignments Of the space troundries.
* /

3ebug("space: : s p a c e (store:%x bAse:%x, length:%xI: thl

AssertJ this ' = 0 1;
Assert(store ' = 0 1 ;
Assertf ((unsigned) b a s e c Orffff) =a 0) ;
assert1 ((unsigned)((c h a r * I base + lenqth I c Oxifff

/ *

store, base. length. this) ;

Set the space boundAry instance variables
* /

thls->basMddEess = bas.;
this->lcngth = length;
this->rTopPaqe = ad&ToPage(base 1;

/.

I %x\n" ,

) == 0) ,

Initialize the pointer table information kept f o r the s p a c e
'/

for(int i = 0; i < 256, I + +) (
this->tableIil recondLeveLPTC = 0:
thir-~tableLil.firstLevel?TE = (PTEI 0.

i
this->store = store,

/ *
Initialize the spaces fault h A n d l e r cable

* /
f o r (i = 0, 1 < HXGiA"ANLEES I++ j I

I
thlr-~flultE~ndler[il = 0

Space destructor. Boy does this need work'
* /
pace: ,-space[j

CPUPrrntL("$pace: : - S p a c e . : h i s x l r \ n " . t h i s I :
Assert(' thxs->lock heldi I 1 ,

' int
/space r j f n , void addr 1

r
Debuq' "Space i s ; n ' hx ', this 1 t x \ n ' . *ddr. thrj I

A s s e r t ' this ' = 3 I ; 1 '
i f , f add= > = thi5--)DaSeAddS~Ss I c b (rddr < =

(void f) I c h a ~ * ! this->basdAdd:e~i + thi3->l?n3th - 1 ? ! 1
return(1 I .

return(3 1

/ *
* See r f a n tddress managed by d Space IS cur:ently resident i n phys~cil
* memory s v a l l d l
* /

Int
space ~ s v a l i d i 7016 addr i
t

/ *
* Entry a s s e r t i o n s and debugging
* /

Debug("Space is'Jalid(\ x 1 : this %x\n", addr. this 1
AsSerTI this ' = 0 1 ;
Assert(this-)IsIn(addr)) ;

Kay 28 10:Ql 1987 Space.c Page I 1
I

* See i f the s p a c e m a p p i n g s think t h e page 1s valid
* /
Int llIndex = (VA) addr 1 . f irstLevelIndex(1;
i n t 12Index = ((VA) addr) .aecondLevelIndex(1;

i f (this->table[llIndexl secondLevclPTE~l2Indexl valid() 1

else

I

return(1 1;

return1 3 I ;
1

/ *
Return the t x s t address managed by a s p a c a

* /
void
Space..rtartAddrers(1
1

t
return1 this->basMddrers 1 ;

/'i,Setu=n the last address managed by a Space. 1
I

"old *
'Space: :ccdRddrerr(

return(!void * I 1 (c h a r *I this->baseAddress + this->length - 1 1 1 : 1 :
/ *

* Allocrte "count" random pages from the space of type "type
* Use 'handler" to manage them.
* /

void f

Space. :allocate(u n s i g n e d lnt count, FaultHandler handler.
allocationType t y p e I

Debug("Space: .aliocatei C0Unt:bd handler I x type 4d 1 , this=%x\n'
CouJt, handler. type. this : .

return(0 1;
i f (c o u n t == 3 1

A s s e r t (handler ' = 0 \ :

As5erti (type == prefetch 1 I ! ! type == faultIn 1 I ,

Assert1 a this->lock. heldByMe(1 1 ;
this->lock. rcquircl I

/ *
Figure out the r a n g e of pages to allocate.

-/
Debug3 "Space: allocate. vTopPage=bK\n' I vTopPaqc , ;
unsigned int 5tart = this-~vTopPige.
v o i d * address = pageToAddr(Start 1 ,

Assert(this->isIn(address 1 I : I

ASSS:C, t!,Ls-,:s:c< p a g e r , ~ d d r : s:ait Couat - 1 , , 1 .

thlS->VTopPagC + = Count.

/ *
* Bu11d the pointer table mappings f o r the n e w l y allocated paqei.
*/

thrs->buildMappings, start, count, handler I :

thls->lock.S~leaie(I;

/ *
I DO the prefetching of the pager i f requested by the c a l l e r
* /

i f (:??e == prefetch 1 {
Debug("space: ~allocite doing prefetch\n" 1 ,
char addr = (Char *) address;
for(int I 3 . I (count, I+* I [

handlez->flxFault(thlr. add: :

addr c = PACESIZE;

i

Debug(' s p a c e allofat- returning kx;n' address I:
:etaz3: rcidrtsi I:

* Allocate 'count" s p e c i f i c pages starting at "base" from the space of type
* "type' use 'handler" to manage them
* /
o l d *
p a = * : allocate! void base. unsigned ~ n t count. Frultnandler * handle:

a;locAtronType type I

/ *
* Entry debugging and assertions
* /

Debug("Space. allot(base:Zx Count td handler 1 x type:td) t h l s = b x \ x n ' .
base. count. handler. type, this 1 ;

returnr 0. I.
II(count == 9)

Assert(handler ' 5 0) ,
ASSC:~((rype == ?refetch 1 I I (type == fau1tIn I I;
hsserr(this->isrn(base 1 ;
xssezt(this->isIn((char * I base t (inti pageToAddrl count , 1 , .
Assert(' this-~lcck.heldByMe(I t i
this-)loCk acquire() ;

/ *
* Figure out the rings of pages to allocate
* /

A s s e r : ((,intlbase 321ff I == 0 1 ;
unsrqned int start = addrToPag.1 base) ;
unsigned iat end = start + count - 1;

~~ ~ ~

ay 2 8 10 03 1987 Space c ?age 5

void address - pageToAddr(s t a r t) ;

Assert(this->isIn(pageToAddr(start I I) .
Assert(thia->isInl pageToAddrl end) I) ;

': FIX TEIS. it 1. Only StOp-glp SOlUtlOll
*/

i f (thir->vTopPage <= end)
this->vTopPaqe = end + 1;

': Build the pointer table mappings f o r the nsvly allocated pages.

this->buildnappings(start, count. handler) i

thir->lock.rela.re();

/.

*/

* DO the prafetching of thm pages if requested by the oallcr
* /

i f (type == prefetch 1 I
Debug("Space: :allOCat.: doing preLctch\n" I i
char ad& = (char 0) address;
f o r (int I = 0 ; 1 < count: I++ 1 I

t

handlrr->flxlault(this. addr I ;
addx += PAGESIZE;

t

Debug("Space: :allocate: returning %x\n", address I .
return(address I ;

Lookup a fault handler in the per-spica index table
* Flnd an available fault handler index and install the handler
* I f it is not already in the table
* /
nt
pace convertlaultE~ndlarToIndex(FaultEandler handler I

Assert(handler 'I 0 1,

int freeslot = -1,

/ *
Leave slot 0 empty so that p a g e s vrthout a fault handler
return the proper value from the handler I method

* /
f o r (int index = 1, index < PUXRANDLSRS index++ I I

LZ(faultKandler[index I == handler

i f ((faultEandlar[index I == 0 1 b c (f r e c S l o t = = -1 I)
return(index I

freeslot = Index

Lf' f r e r s l o r == -1 ,
r e t ' l r n , 0 , ,

h~je:t , LreeSLot > = 1 , L b (f r e e S l o t < NAKBANDLERS 1 i I
f a u i t H i n d l e r I LzeeSlo: I = h a n d l e r :
r e t u r n , f r e e S l o t i ,

* B u r l d fhc p9 :n fe r table mappings for " c o u n t ' p a g e s s t a r t i n 3 3: "star:"
* sana3.d fy h b n d l ~ r '
. '
3 id
pac- bu i ;dMapp inqs (uns13ned i n t s t a r t . u n s i g n e d i n t =3unc

F a u l t l i a n d l c r * h a n d l e r 1

/ *
* 2c:rp debug3:nqs and i s : ? r t ~ o n i
6 ,

3e3uq, s p a c e s " i l l . l a p p : n q s , s t a r 1 LS Coun t ' X "andl?r t:< 3.,n

s t a r t , c o u n t . Candler , .
A i i e r i t h i s -) i s T n : p a g e r o h d d r s t i r t I 1 8 ,

. i ~ s i) z t t h i s - > x 5 : ? f pag+?=Addr s t a r t + count - : I , ,
A s s e z t h a n d l e r '3 0 , ,
I '

F i n d a n a v a i l a b l e f a u l t h a n d l e r i n d e s a n d i n s t a l l t h e h a n d l e r
* /
~ n t index = thi~-)ConVeEtEaultHdndle:Talnd~x, h a n d l e r , ,
3ebug(' S p . c e - . S u i l d n a p p ; n ~ s . Y s r n g h a n d l e r index %:? 3'. i n d e x , ,

/ -
e Loop t h r a u g h e a c h page a n d r n i r i a i i r e t a e p o l n t - r :iol;. ? n t r y f ~ r
* r a c h A l L o c a t e nev p o i n t e r : a b i e s a s ne+d*d
+/

uns:gned ~ n t page = s t a r c .
.Cor i ' ; ns igned 13t 1 = 3 . i < c o u n t . I++ 1 [

u n s i g n e d i a t l l f n d e x = i p a g e > > 7 i b Cxff.
u n s i g n e d I n t l i l n d c r . = page i 5x7f.

/ *
c h e c k if a p o i n t e r t a b l e n e e d s t o b e a l l o c a t e d

* /
for t h i s p a g e a n d 3e t one i f it d o e s

I f (t h i s - > t a b l e [l l I n d e x I . SeCondLevelPTE == 5 j {
Debug(' S p a c e : b u i l d M a p p r n g r . r l l ? c a t i n g 1 t a b l e \ n " I
A s s e r t (' i t h l s - ~ t a b l e [l l I n d e s I . f 1 r s t L e ? e i P T E v a l i d r 1) i ,

Assert(t h x s - > t a b l e [l l i n d e x l . f i r s t L e ' r e l ? ? E . v i l i d (i) ;
A s s e r t (t h i s - ~ t a b l f [l l I n d e x l . s e c o n d L a v e l P T E ' = 0 I ,
A s s e r t ! ' t h i r - > t a b l e [l l I n d e x l 1 e c o ~ d L e v e l P ~ E ~ 1 2 l n d e x l v a l i d r 1 I ;

/ *
~ l l o c a t e a p o i n t e r t 3 b l e for a normal s p a c e . T h e t a b l e 1s a l l o c a t e d o u t
o f t h e ;Po's heap space

* /
PTE
s p a c e : d l l o c . t e P o i n c e r T a b l e (i n t p a g e 1

Debug(" S p a c e : a l l o c a t e P o i n t c r T a b l a (p a g e : h d l \ n " , page I ;
.~jser: ' t h i s - > i s I n (pageToAddr i p a g e 1 i) ,

u n s i g n e d i n t 1 1 I n d e x = I p a g e) > 71 b O x i f .

v o i d * pPTaddr = (t h i s - ~ r t o r e l - ~ a l l o c ~ t e (1 i ,
3 e b u g (' S p a c e : . I l l o c a t e P o i n t e r T a b l e : p P T a d d r = r x \ n " pPTadds i ,
Assert1 pPTaddr ' = 0 1 ;

space * heap = ne-)haaDSPacef) ; _ . .
Debug1 " S p a c e : . a l l o c ~ t e P o i n t e r T a b l e : heap = a x \ n " , h e a p 1 :
A s s e r t 1 h e a p ' = 0 t i

v o i d vPTaddr = h e a p - > a l l o c a t c (1) ,

Deoug(' Space.. a l l o c a t e P o i n t e r ? ~ b l e . vPTadds=%x\ ,n sPTaiddr i .
A s s e r t : vPTaddr ' = 3 , ,
neap->rnapi vPTaddr . p P T a d d r . 1 i ;

A s s e r t , ' . t h i s - ~ t a b l e [l l I n d e r l f i r s t L c r e l P T E . v a l ; d (I ! ,
t h i s - ~ t a b l e [l l I n d e r l SecondLeVclPTE = PTE * I 7 P T a d d r .
, t h i s - > t a b l s [l l I n d c x l f i r s t L e v e l P T E j map(r d d r T o P a q e (pPTaddr 1

/ / R O W 30 UX CBOCSE THE R I G H T ?ROTECTION LEVEL SERE- /.
I n i t i a l I L e the n e w p o i n t e r t a b l e .

* /
I n i t S e c o n d L e v e l P a g e T . b l e (i PTE * 1 vPTaddr J ;

r e t u r n ((PTE * i rPTaddr I ;
I

70 Id
space . g e t P o ~ n t e r T a b l e s (u n s i g n e d i n t r t a r t P a g e . u n r r g n e d ~ n t e n d p a g e j

t a y 2 8 11 '31 1987 s p a c e c P a g e 3

': set :he f a u l t h a n d l e r index in t h e p o i n t e r t a b l e e n t r y

t h i s - ~ t a b l e ~ l l I n d e x l s econdLcve lPTE[:2 Index l h a n d l c t i n d e x 3 I .
* /

/ / B O W DO I GET THE R I O B T PROTECTIONS SERE

3 ! ,

i
Debug("Space: : g e t P o l n t e r T a b l e ~ (t x , % x] \ \ n " , s t a r t P a g e . e n d p a g e 1 ,
A s s e r t ! NOTREACHED) ; // t h i s r o u t i n e w i l l d i e s o o n

!

8
I I

i
I

I
1
1
r
1
1

. 3 l p 1 V1:tJAi p a q c f O 1 ? T . y s l C % L ?'$e crsrne
! .,
v31d
lapace .mapi void * p a g e 7oid frame)

Debug(" S p a c e m a p (page:tr fKame:tx) chis = + x \ x

Assert(chis-)lsIn(page) I ;

Assert? ' this-)11ck heldByKe(1 I ,
thls-,lock. acquire(1 ,

p a g e , frame, this ,;

I -
* Map the virtual pags to the physical pa3e f r a m e ./

unsigned int llIndex = I (' I A) p a q e] firstLer%iIndex~ ; ,
unsigned int 12Indes = i (V A) page) sec3ndlevel:nderi b .
Debuqr "Space. n a p : ;lIzdex=%d L2Indez=*d\n", LLIcdex 12:nd-r

A s s e r t , this->tabie[llIndexl f : K S t L C V I i ? ? E 7 t l l d l , , ,
ASSCE: I :*is- > t a b i e [1 lIndcx I secondLevrl??E ' = ,:
A s i e r z f 'this-)tdble[li:ndesI s~csndLe.,ri?TE112Indel: iaiid , , .
this-~table[lllndexl secondLerelPTEIl2:nd%xl s i p , ~dd;ToPlqeipaqe
/ /RCV DO I PCT THZ P S O P E X PROTECTIDNS BERE' "
Assert(C h i s - ~ t a b l e [l l I n d e x l . s e ~ o n d L e r ~ i P T E ~ 1 2 I n d e ~ ~ ?slid(1 1 ,

this-,lock.rcleare();

* handler - return the fault handler f u n c t i o n (1: any1 f3: 1 q~7'n

-/
new virtual address.

'aultsandler *
:pace- -handler, void raddr)

Debug("Space- handler(adds t x ! this=ix\,n', vaddr t h i s , ,
ASSert(this->:sIn(vaddr 1) .

Assert(' Chis-)lock heldByMec 1 I ,
th:s-~lock.acquirei).

unsigned llix I ((VA) riddr).Cir~t5evelIndexo.
unsigned lair = ((VA) raddr) .secondLevelIndex,) ,
Debug("Space: handler. ll:s=%d l2rx=\d\n'. 11iX, i2ix 1 .

%ti this->tahle[lLir] .sccondLevelPTE == '3 1 I
Debug("space: :handler: invalid Llpte\n" 1
Assart(' thie-)table[llixI .rirstLevelPTE.ral:di) I ,
:his->lock.release(I ;
return(0 I ;

1

PTL U p t e = b(thi~-~tAble(lliSl.secondLevelPTS~llix1) i

~ ~~ ~~

a y 2 8 10 J 3 1987 Space.c Page 10

Sa,AltBandler the8andler = Cault8andler[llpte->handlarIndex(1 1 I
Debug("Space: :handler(*.): index: \I. handler: Ix\n".

returnf theHandler 1 ,

raddr, l~pte->handlcrIndex() , theiiandler) ,
lOCk.Kclbase(];

* COnLtKUftOr Cor a kernel (heap) space. It does things differently since
* there is no heap space for it to get things t r D m i s i n c e It is one)

Kernel spaces get their state and pointer tables f r o m statically allocated
* Germ v1rtua1 m e m o r y . T h e y get physical memory like o t h e r npacer.
'/
ernelspace. :Kernelspace(store store. void * base. int length 1

(store, base. length 1 // arguments to parent COnStruCtor

Debug("SernelSpace::itcrnelSprce(store-rr b4se-tr 1 e n g t h . l ~ I\n".

A s s e r t (store 'I 0) ;

': Get physical pages Cor this Kernel spice

unsigned paqm. = Paq.Ceilinq(sizeof(KernelSpace I 1)) PACESKIFT:
void p r h l s = storm->allOcate(pager , ;
Debug(" \ t ~ s S n ~ ~ S p A ~ ~ : : c t o r : pthis = %x ,\d pagasi\n', pthlr.paqes I :
Assert(p t h i s ' = 0 1;

/ *

store, base. length I ;

* / -

Get virtual pages Cor this gernel S p a c e
* /

Se:nelspace * CernelSpaceAllocator(I .
Bernelspace * vthis = Kernelsp.c~llocitor().

nap into G e r m .
. I

extern void GernMap(unsigned. unsigned, unsigned ,;
GermtIap((unsigned) vthis) > TACEStIIFT

(unsigned) pthis)) PAGESHIFT.
pages I ;

/ *
OK to set this. Side-effect 1s to c a l l the parent class (space1

f constructor. ./
this = vthis,

:ernelspace: : -YernelSpace()

extern void Halt(];

CPIJPrintL('Kernel destructox call.rd'\n" I ;
Bllt(1 .

'/ C e ~ m K c ~ n e l S p d c e D e A l l o c a t o r i t h i s I :

70 Id
cerielspaze getPornterTablesr uns1jne.l I n t atartpage, unslqned ;nt sndPiae 1

3abuq: "KernelSprce' 'gctPo~iterTablest X S , * x \ \ n " ,
rtartPaqe. endpage 1 .

f o r unsrqned i n t page = starcpage. page < = endpage. page++ , :
unsigned 1lIndex = t p a q e > > 71 h Oxff :
unsigned 1lIndcx = page (I 3 x 7 f ;

/ *
Check i f a pointer cable needs to be allocated
C O E this page.

* /
if(chis-~cable[llIndeX1 secondLevelPTE = = 3) i l

a y 2 3

o id
p a c e

1.1 03 1 9 8 i Spacc C Page 12

Debug('SericlSpace j'etPTs 7ett.oq a ptc\n" , _
Assert(' f thrr->table:Ll:ndexl tirztLev11PTE 7 a l ' . d () \ t i

void pPTaddr = :th~s-)store)-)alL3cat~(I 1 .
Debug("Kernelspace 3CtPT: pPTaddr = rx\n" ?PTaddr I .

Assert(pPTaddr ' = 0 I .
extern vo,d K e r n e l P o l n ~ c r T ~ b l e A l l o c ~ t e (gernelspace unsigned 1 .
void vPTaddr = KbrnelPointerTableAllocatei c h i s . page I .
Debug("Kernelspace: .qetPT vPTaddr = %s\n" 7PTiddi i.
Asserti vPTaddr ' = 0 I ;
extern ~ o i d iermMap(unsigned. unsiqned. unsigned I :
Germmap(luns:qned! vPTiddr > > PAGESHIFT,

(unsigned) pPTiddr > > PACESHIFT,
1) :

th~s->tible[ilIndex] secondLevelPTE = (PTE *) vPTaddr,
t this-)table [llInderl t 1rStLeVelPTE m a p (

/ / B O W DO WE CPOOSE TEE 3ICBT PROTECTION LEVEL HEBE-

/ *

addrToPager pPTiddr) , 3 :,

Initialize the nev second l e v e l page t a b l e
* /
~ ~ i t S e c o n d L e v e l P a ~ C T a b l e I ,??E) vPTaddr J

this->table[llIndex] CirstLevelPTE valid1 j
this-~tableIllIndexI SecOndLevelPTE ' = 9 1

'this- > table [llindcxl SecondLevelPTE [12 I nderl val id1 1 I

m a p i void * vbdse v o i d * pbase. 'insiqned rnt count :

hisert(' t h i r - > ? o c k . heldByMe! j I :
cn:s->lock acquire(1 .

/ *
f n a p t h e v i r t u a l p a g e s to the p h y s i c a l p a g e s
- /

unsigned vtop = unsigned1 v b a s e A (C O I L n t * PAGESIZP) ,
unsigned page = addrloPagei pbase 1 ,

Debug(''Space. . r n a p (t r . tX,-dl Vtop=%x paqe=*r\n", vbase. pbase.

foq (uns~gned viddr * !unsigned) vbase:
count. vtop, page) ;

vaddr < vtop; vaddr += PACESIZE. p a g e + +) [

': Deternine the first rnd second level p a g e t a b l e entriss

3.nsigncd llinder = ', VA, vaddll flrstLeve1Index~ j ,
unsigned 11Index = v V A 1 vaddrl secondLevelIndex(1 .

Assert(thir-~tablelllIndexl. flrStLevelPTE valid(,
Assert(rhis-~table[?lIndexl ScCondLevclPTK ' 5 I / .

~ s s e r t ('thls-)table[il:ndexl S4COndLevelFTE[l2:ndIx: 711:d

,'

i
8
B
I
I
I
I
I
li

r o i d *
:pace a ; l o c a t s (~ n s i g n t d ~ n t c o u n t)

Owner russo at m.cs.uiuc.edu
Name Universec
Account 173
Site Dept. of Computer Science
Printer 24/300
SpoolDate Thu May 28 10:35:29 1987

JobHeader on
JamResistance On
Language printer
formwidth 132
formsperpage 2
outlines on

IPLAGEN Printing System, Version 2.2, Serial #86: 2: 85
Page images processed: 2
Pages printed: 2

Paper size (width, height) :

Document length:
2560, 3328

4344 bytes

1y 2 8 :I 0 3 l 3 3 7 :2:1?:se c ?13' :

t n o d i f i c i t i o n H i s t o r y :
S ~ o g : U n i v e x s e c . v 5

b R e v i s i o n 11 ,I 8 : / 3 5 / 1 1 1 5 . 5 7 2 2 rcs=o
* c o n s o l e i n p u t and p r i v a t e s t o r e s .

* R e v i s i o n i O . i l 37/05/06 19.30.43 r u s s o
* added L o a d C o 3 t e x t F g r me thod l s p l e m e n t a t r o n

* R e v i s i o n lO.:O 37/05/01 10.45:lO : u s so
* t u r n e d o f f d e b u g q i n g

* i l e v i i i o n :I 9 P f / : . L / Z C ?I ,I3 17 K'isso
f c l e i i e d Log

* l e - , i s i o n iC. i 3 : / : 4 / 2 2 21) 17 50 r'dss.0
* added s p a c e c o n t a r n i n g neThod .

* l e v i i i s n 1 0 . 1 27/04/22 07.41 39 rlisso
* N e w S p a c e s , u n i v e r s e s and C P U o b l e c t s w o r k .

Revision 9 . 1 37/04/11 :9:50:07 russo
* ~ n l z i a l r e v i s i o n
* /

I n c l u d e ' A s s e r ~ h"
: n c l u d e ' C e n u q . h '
1n:lude ' m d - t ~ ~ n e a b l d h"
: n c l u d e ' S t a r e h '
i n c l u d e ' S p a c e h '
i n c l u d e 'CPO h"
i n c l u d e ' U n i v e r s e h"

F i n a l l y '

f U n i v e r s e c o a i t r * C t o r sets up the m a p p r n g r d x s c r r b c d above
'/
n ~ v e r s e U n i v e r s e (U n i v e r s e w h e r e , PTE * p a q e T a b l e ,

I .
I -

* E n t r y d e b u g g i n g and a s s e r t i o n s
* /

Debug('UniYe:se: : [l n l v e r s e ' l * X I %I) \ n " . v h e r e . p r g e T a b l e 1 .
A s s e r t (t h i s == 5 I:
R s s e r t (whexe ' = 0 !;
A s s e r t : P a g e T a b l e ' 5 0) ; * ,

ORIGINAL PAGE IS
OF POOR QUALITy;

a y 2 8 10 53 1987 U n i v e r s e c Page 1

t h i s - > u s e r s p a c e = I:

C P U P r l n t f (" I JnLver se . : - U n i v e r s e : t h i s kx \n" . t h i s i

Bait'):

* Add a Space t o t h e U n i v e r s e o f a d d r e s s a b l e s p a c e s o n t h i s CTU.
* This overlays any s p a c e s t h a t a r e a l r e a d y mapped i n t o the same range

o f a d d r e s s e s t h a t t h e new s p a c e o c c u p y s .
*/

' 0 i d
n i v e r s e : . a d d s p a c e (S p a c e a s p a c e 1

Debug(" U n i v e r s e : : a d d s p a c e (%I) : t h i J = \r\n". a S p r c e . t h i s I ;
A s s e r t (a s p a c e ' 5 0 1;
A s s e r t (t h i s 'I 0 I ;

/ *
* Back t o f i g u r e o u t vhLch s p a c e 1s b e l n g a d d e d . P h i s w i l l go away
* o n c e t h e U n i v e r s e REALLY k e e p s 1 l i s t o f t h e mapped in s p a c e r .
* /

i f (a S p a c e - > s t a r U d d r e s s (1 < (void *I TASKLOWADDK !

else
t h i s -) k e + n e l S p a c e = a s p a c e ;

t h i s - > u s m r S p a c e aspace ;

/ *
Copy the f i r s t l eve l p a g e t a b l e e n t r i e s I n t h e space o b J e c t i n t o

* t h e CPUs * r e a l * f i r s t level page t a b l e . T h i s shou ld b e - l e a n e d
* up t o o n l y c o p y and f l u s h t h i n g s d i f f e r e n t t h a n wha t i s already

t h e r e .
*/

u n s i g n e d i n t lcvlrame = r d d r ? o F r a s e (a S p a c e - > s t a r t A d d r c s r (I I :
u n s i g n e d i n t h i q h r r a m e = &ddrToCrame(a s p a c e - > e n d A d d r e s s i I ! i
Debug(" U n i v e r s e : : a d d s p a c e : Low/high f r a m e : bd /*d \n" .

tor(int 1 = 1owPrame; i (= h i g h f r a m e ; i++ 1
lowFrame. highframe 1 .

t h i s - > f i r s t L e v c A P a q e T . b l c (i] = a S p a c e - ~ t a b l e l i l f i r s t L e v e l P T L ;

/ *
* VERY i n e f t i c r e n t way to f l u s h M U c a c h e , b u t for now lt w o r k s fine. ./

Wr'itePTSO (ReadPT0O () 1 ;
W r i t e P T S l (R e r d P T 0 l r) I ;
Debug(" U n i v e r s e . . a d d s p a c e : f l u s h e d m U \ n " I ;

I .

3 e t u r n t h e s p a c e t h a t a n a d d r e s s f a l l s i n 3r 0 if t h e a d d r e s s is i n no
space c u r r e n t l y in t h e u n i v e r s e .

* /
: pace

ORIGINAL PAGE TS
OF POOR QUALITY

Owner russo at m.cs.uiuc.edu
Name Threadc
Account 173
Site Dept. of Computer Science
Printer 24/300
SpoolDate Thu May 28 10:12:54 1987

JobHeader on
JamResistance On
Language printer
formwidth 132
formsperpaqe 2
outlines on

IMAGEN Printing System, Version 2.2, Serial #86: 2: 85
Page images processed: 3
Pages printed: 3

Paper size (width, height) :

Document length:
2560, 3328

7 57 0 bytes

I
1

a y 2 8 :0 0 1 ;?8: Thread c P13' 1

! ,
f Threld L. Inple-enzs 1 3 e n e r l c ::.x3al -,f 2 x e c u Z i ~ n ta 1u l1 . l

h ~ g h e r levei rerrxel pr3cerser on Lap of.

some fi-lcls (r y p e . prror=:yi are opaque and jus: set dad read by the
kernel. The S p a c e is ured Eo dllccate and free m e m o r y for r h e

* threid.

Saeader ThreAd c.'J 1 1 1 97/15/24 05:50 18 riisso Exp S
$Locker. 5

* /

Revision AistJry.

Revision 11 3 33/05/74 05 50.18 russo
SLoq: Thread c.v S

* all bur rmportant debugging o f f

f Revision 1 1 1 97/05/21 2 3 1 4 25 rus.90
w o r k ~ n g on d e i t r 7 i c t o r 3omr

f Revis:?n 11 0 37/05/21 1 5 4 3 3 4 rdss0
* Cansoie lnp'1t and private S t D L 2 s

* Revision 11.22 81/05/12 10 00 18 :us50
* added GernThread c l a s s c o n s + i ~ u ~ t o r and destructors

* Bevlslon 10 1 5 87/05/10 21 09 31 rusio
altered to accomidate each thread keeping its ovn interrupt stack

* t h i s m a k e s iontext snitching much easier and much m O K C effLC1ent

* Revisian I0 12 87/05/91 15 47.43 rus50

* J = V L S ; = ~ i,i.c 8:/04/a2 37 24:53 zusso
6 Nbv ; p a = e s universes and CPU sb]ecto work. Flnally'

* Revision 9 0 37/04/'1+ 14 5 5 31) TIISSO
* Multiple threads and timer ir.te:ruFti

Revision 3 0 8'/03/29 1 5 22:14 KUSSO
f - aew and -delete added for memory management. Also, class interrupt5 work

* Revision 1 1 97/02/13 18.1::18 e u s s o
L3it;al x e v ~ s i o n

*/

include "ASSCLt. h "
include "3ebug. h "
rnclude 'ad-tuneiJle. h"
include "?ad-constants. h "
include "Thread h"
Include 'Frame h"
include "Space.n"
Include '3nLverse. h '
include 'CPU h '

ay 2 U :O 9 1 1987 ThreAd.c Paqa 7

* 'Which h f i l a should these 90 i n '
*/
define CPTPSB-I OxOBOO
define CPlPSB-P 9x0400
def .ne CP'JPSR-S Ox0200

define CPUPSB-N UxOOBO
define CPUPSB-Z Ox0040
define CPUPSI-I oxooao
define CPUPSB-L Ox0004
define CP'JPSR-T OxOOOJ
define CPUPSR-C Or0001

ypedaf vold (a A P N) () ,

define :?lPSR-J 0x0100

* Create * new thread, initialize all thm internal fields, and era-push
* Lts initial context o n t o its interrupt stack
* /
hreid Thread(APFV StartAddreSs, int inltialStaCkPOint~L, int argument,

xnt p r i o x i t y , void kernellnfo)

': Enrty Assertions and Debuqqinq.
Debug("Thread: :Thrmad(8x. % X I this tx\n", startAddress

* /

initia1StaakPointmr. this 1 .

Assert(this * = 0) ;
Assert(j unsigned) startAddress (= LASTADDBCSSABLELOCATIOW I i
Assert('unsigned) initialStackPoimter < = LXSTADDRCSSABLELOCA~ION) ,

/ *
Allocate an initial frame 1n the threads interrupt stack.

* /
char lsp = bthis-~interru~tSt~ck~stackSize] - r l r e o f (SErUCt Frame) ;
this-)setInterrupEStackPointer(i s p 1 ,
Debug("Thread: :Thread: interru~tSt~CkPointe5' *X\n''

this-~lnterr~ptStackPointer~ 1 1 ;

StrUCt Frame Context = (strUCt Framm *] thrr-~int~r:uptStdckPolnter~l.
Debug("Thread: :Thxead: initralContext a t . \x\n". COnteXt I i

/ *
* Load the PC, PER, nOD, sB. S P and FP register copies v a t h their

initial c o n t e n t s .
* /

context->vectorNumber = 0: // yuck'
context->pc = 'unsiqned inti 5tartAddres5
context->prr ='(unsigned short1 (CPUPSIL-I ICPUPSB-SICPUPSR-U I .
context->mod = 0; / / cixinq this could solve the Lomuem problem

/ / also it should be loaded with 1 v a l u e
// that p o r n t s to somethiaq sensible

contert-)sp = (unsigned int) InitialStackPointer;
COn+ext->fp 1 funsigned int) initla1StackPOlnt~K;

C P C P r i n f f i T h r e d d : . - T h r e a d t h i s = * x \ n ' . C h i 5)
Assert, t h i s ' = 3 1 ;
A j i e r t ! t h i s ' = X e - > c , u r r e n t T h r e a d (J I ,
c h a r - i r a c k P a g e = ! c h a r * I PdqeF11orI c h l s -) i n i t i b l 3 S ? , ,
CPUPr in tC(" T h r e a d : - T h r e a d . s t a c k ? a q e = *:<'in', s t a c k P 1 q e I ,
s p a c e * s t a c k S p a c e = x e -) ~ ~ n i v e r s e f : - i s p a c e C 3 n t a l n i n = s t a c k p a g e 1 ,
C P I J P r i n t € (T h r e l d : - T h r e a d . s t a c k s p a c r = k x \ n ' , s t a c k s p a c e I ,
A s s e r t , s t a c k S p a c e ' = 0) ,
/ / s t ~ c L ~ p ~ c e - , d e l l L o c a t e (s t r c k P a g e :
A3se:t(NO?BEACHED 1 ,

* Dump t h e L n t e r n a l c o n t e n t s a t a t h r e a d
* /

' 0 id
' h r e a d - dump, I

nay 2 8 1 0 . 0 1 1 9 8 7 T h r e a d c P a g e I

i t r u c r Brame * C = (struct f r a m e * I t h i s - ~ i ~ t e : r U p t S t ~ C ~ P o i i C e ~ l) ,

C P l J P r i n t f ("dump (th~s-zsl t r a m e = t x P C = $ x PSR'4s XOD=*s S P - t s BP=*s\n

C P b ' P r i n t f ("dump. r O = k x r l = i s r 2 = % x r J : > x r 4 = 4 s r 5 = t x r 6 = Q s r i = % s \ n " ,
t h i s , f , f -) p c , f - > p s r , C-)mod, € - , s p , f - , f p 1;

f -) r O . C->rl , f - > r 2 , f - > r 3 , C -) r 4 . C - > r 5 , f - > r 6 , € -) r 7) ;

1

IUt
T h r e a d . ~ r P r e e m p t a b l e (,
t

t

/ *

r e t u r n (1 I;

T h r e a d s w h i c h run with k e r n e l p r l v l e d q e r
* /

K e r n e l T h r e i d - S e r n e l T h r e a d (APiV S t a r t A d d r e r s , int * i n i t i a l S t a c k P o i n t e r .
~ n r a r g u m e a t , ~ n t p r i o r i t y . v o i d k e r n e l 1 a f o)

p r : o r r t y . k a r n e l I a C o 1
(J t a r t A d d r e s s , i n i t i a l S t a ~ k P ~ l n t ~ r . a r g u m e n t ,

Debug! " X t r n e l T h r c a d : : E e r n e l T h r e a d ! t h i s = * x \ n ' ' t h i s !
.4rsert(this ' = J 1;
o t r u c t Frame * f = (s t r u c t Frame * 1 t h i s -) I n t e r r ' ~ p t s t a c r P o 1 n t e r I I ,
Debuq, ' K e r n e l T h r e a d : : K e r n e l T h r e a d . i s p = r x frame = t x \ i "

C - > p s r b - !CPUPSR-u);
thyr-~ln~erruQtStackPointer(I , 2) ,

K e r i e l r h r e a d . - f e r n e l T h r c a d ()

C ? W P r l n r i , Y e r n e l T h r e a d .
A s s e r t (NOTRE.4CEED , ,

/ *
* THE germ t h r e a d s C o n s t r u C t o r L a t e r try to l a k e sure :his 1s ~ n l y c a l l e d
* J n c e or a11 hell might oreak L a c s e
* I

C e r m T h r e l d : : C a r m T h r e a d i OermThread Where 4 P P J s t i r t A d d r e s s ,
i n t * i n i t i i l S t a C k P o i n t e r , ~ n t a r q u m t n t , ~ n t p r l o r l t y
v o i d * i e r n e l I n t o 3

p r i o r i t y . k e r n e l I n C o j
: ! s t a r t A d d r e r r . i n i t i i l S t a c k P o i n t e r a rgumenr

A s s e r t ! where ' = 0 ! i

t h i s = u h e r e ;
Debug, "CermThredd: G t r m T h r e a d , 1 t h i s = %x\n". t h i s , :
s t r u c t Frame * C I iSCruCt f r a m e * ! C h i s - ~ ~ ~ t c r r u p c s t a c k P o l n c ~ r ~ 1 :

Debug, ' C e r m T h r c a d . GermThredd i r p = >s f r a m e = , s \ i ' ,

// system mode. i n r e r r u p t s o f f
1

Owner russo at m.cs.uiuc.edu
Name Tim eS1iceThread.c
Account 173
Site Dept. of Computer Science
Printer 24/300
SpoolDate Thu May 28 102959 1987

JobHeader on
JamResistance On
Language printer
formwidth 132
formsperpage 2
outlines on

IMAGEN Printing System, Version 2.2, Serial #86:2:85
Page images processed: 1
Pages printed: 1

Paper size (width, height) :

Document length:
2560, 3328

1703 bytes

I .

* TimeSl :~eT! I : edd~
S e t up :ne = > m e r w a i t for ~t to t i i k , then s e t I: sp again., . f o r e v e r

$ H e a d e r T i m e S l l C I T h r ~ a d c , v 11 3 97/05/21 1 5 5 5 C l r'1ss0 Exp $
S L o c k r r S

*/ /.
R e v i s i o n B i S t O r Y '

Siog. T ~ m e S l i c e T h r e d d c;r S
gev:sion 11 0 8 7 / 0 5 / 1 1 1 5 5 5 5 2 r u s s o

f c s n s o i e i c p u t and p r i v a t e stares.

~ e v i s l o n 19 1 97/05/13 2 0 - 1 9 0 7 x u s o
l n l t i i l r e v i s i o n S p i l t o f f €:Om K a x n e i n a l n : ,

*/

I i nc1 l ;de " D e b u g . h '
I i n c l u d e " .xjser t . h "
1 z n c i u d e " P x c D p t i o n a
I l n c l . d e =?'I 5 ' '
I i n c l l i d e VnCt3:i h '
I I n c l u d e T : m e r a '

/ *
* The t i m e s l i c e i n t e r r u p t T h r e a d z 3 d e
* /

v o i d
T i c k e r (int a:9 i

Debug(" T i c k e r (%I j\n". arg I ;

I n t e r r ~ J p t F x c e p t i o n c l o c k T ~ c k = nev :nte: :uptExcept ioni I :
X e - > s a t E x z e p t i o n (T I I (E S L I C E - V ~ c C 3 : . c l o c k T i c K) i

Timer * time: = new T i m e r (I ,
Debug! " T L C L e : . timer = * X \ n ' ' , t 1 U - K) ;
A s s e r t x t i m e r ' = 0 j ;

/ *
G e t o u r t i m e : i n i t i a l i z e d and start It r u n n i n g

* /
u h i i e l 1 i {

t i m e r - , r t a r t (10000 16) ; I / 1 n t e : r u p t 16 in 10 s e c o n d s
// A r e n ' t t h e s e n i c e c o n s t a n t s t h a t
// will come b a c k t o h a u n t u s s o m e day

c l o c k T i c k - > a r a l t (1 .

': R e s t a r t t h e timer and a c k n o w l e d q e the i n t e r r u p t .

extezn void I n t ~ r r u ~ U c k n o v 1 e d q 8 0 ~

t i m e r - > r t o p (I .
Oebuqi 'Ticke: : A c k i n q inte:rupc\n" I ,
1 n t e r r u p r A ; k n o v l e d q e l 1 ,

* /

ORIGINAU P A - a IS
OF POOR QUALITY

/nay 1 8 10 02 1 9 8 7 TlmeS1 iceTnreml .O Page 1

Debug(' T i c k e r timer r t s ta r ted a n d interr . p t a c k n o u l c d q e d \ s ") ,

Owner
Name Tas k.c
Account 173
Site Dept. of Computer Science
Printer 24/300
SpoolDate Thu May 28 10:23:46 1987

russo at m.c s.u iuc.edu

JobHeader on
JamResistance On
Language printer
formwidth 132
formsperpage 2
outlines on

IKAGEN Printing System, Version 2.2, Serial #86: 2: 85
Page images processed: 2
Pages printed: 2

Paper size (width, height) :

Document length:
2560, 3328

4 9 5 3 bytes

I A s s e r t : (unsigned inti initra1EntryPoint < TASKKIGEADDR I:

/ *
Set the space msmber variables.

* /
thar->space = space;

/ *
* Build the fault handler the threads vi11 inltlllly use to fault

theix stacks in uith. (Hakm sure thxs as dons bmfore any
th:eads are created in this task.)

* /
thls->stackraultKandler = new DemrndZeroPlultEandlsr(I ;
Debuq("Task: :Task: tlas-,strckFiultXandler %x\n".

Assert(this-~stackraultx.ndler * = 0 1;

/ *

this-,.t.ckrlultalnd~er) ;

Start the initial thread at the i n a t l a 1 entry point
* /

Debug("Task: : T a s k : calling stbrtThread\n") ;
tbis-)threads = 3 :
(void) Task: : stattThrsad(rnitlalEntryPolnt, 3 1 :
Debuq("Task: ;Task: this-)thECads = t q n " , this-)threads :, .
Assert1 this->threads ' = 0 ,;
Assert[this->thrmads->nsxt =I 0 1;

1

/ *
Task destructor.
Delete 111 the threads in the task then the task space

* /
(Task: .-Task(]

Pr:ntf("Task::-Task: this = %r\n", t h i s 1 .
w h i l e (this->threads .= 3) {

Thread t 1 this->threads;
this-)thteads = t->next;
delete t;

1
delete this->spacm,

I

'Hay 23 13 > 2 1?87
I

Task c P a j e 1

I .

* ?ask.c. 1 3 S E Z l a S S Lmplsaentl:;?n.

jnerdo.r ;*ask.= 7 :I : g i o 5 / 2 4 1: 3 i - 5 j :ujjo zSp j
$Locker 5

:/
* Modif 1CbtlOn 8iSCOrY

$ L o q - Task c , v S
~eris;on 11 1 37/05/74 1 7 . 1 1 . 5 5 russo
fixed t? use new Space allocate methods

R ~ V I S I ? ~ 11 0 37/05/21 15.5.1.58 rxsso
console ~ n p u t and private s t o r e s

Revls;on 10.3 97/05/12 17.a7.12 russo
added intliilThreid method
And DoNT hare t h e COnStructOr add the :nitill zhreid to the scheduler

ORIGINAL PAGE fs
OF POOR QUALITY

* xeviszon i 3 2 37,(04/22 1 5 4 1 2 1 :'ASSO

* hack t3 add tasks space t ~) List ? f spaces n r c c o s s r r y t a r d n e w thead to :u3

* ReVls:?n :3 0 57/04/22 0: 1 3 2 9 Z'JSSO
* ~ e w s p a = r s . Uni'lerses and C ? U ob;ects work. ;:naLL'('

Revision 9 i 3 7 / 1 4 / 0 5 17 23 13 :LLSso
fixed 33 only o c e f a u l t handler is allocated for a11 the threads S ~ ~ C K S
rather than one per stack.

f Revision 9 . 9 37/04/C1 15.12.41 r1Iss0
Multiple threads and timer interzupt3

* R1v1slon 3 . 2 97/33/29 1 5 3 3 5 4 russo
- new and -delete idded t o r memory manaqement. Also. class interrupts work.

a e v i s ~ o n 7 3 37/03/25 12.49.41 russo
Fault handle1 hie:archy Works I 5 0 does Interprocessor vectored Interrupts.

Re7isicn 4 i 37/03/03 16.44.21 rUsSO
* Initial Revrsion
* /

I include "3ebuj h"
I include "nd-r'Jneable h"
I include "Assert h"
I Lnclude ,space.h"
I include "FaultEandler h "
Iinclude "Thread h"
Iinclxde "Task h"
I iiclude "Scheduler. h "

:onst int ThreadStackSaze = PAGESIZE; // hou should this REALLY be decided.

:ypedaC .road (* A P F I I O .

rark..Tark(space spacm. A P W initia1EntryPoint 1

\

i
I

i

I
i

I
I
I
i

i

i

I
I

~

I I
~

i
I
i
1
,

i
I
i

/May 2 8 10 07 1987 Trsk.C Page 7
7

I

': Return a p o i n t e r to the Tasks i n i t r a l thread

Thread
T1Sk:.:nitidlTh:e.d()

* /

i n t s t i c k = . i n t * j s p a c e - ~ d l l a c a t e (s t a c k P a F s

Dcbugr 'Task. 5 t a r t T h r i r d S t i C k l \ d b y t e s , a t . i z \ n S t l C k S l Z e s t a c k I
thi5-)StdCkFdUitRindler. € a u l t I n i :

A s s e r t ' s t a c k ' = J i :

/ *
* c:%ii+ t h e ?>:Cad 1:seLi
r ,

Oebuq' ' T a s ~ s t a r t ? h r e i d c r e a t i n g t h e t h r e a d \ , > ' .
T h r e a d * t = aew T h r e a d 1 e n t r y P o i n t , s t a c k + ~stacssize/4 arqumenr

Debug1 ' T ~ s K 5 r a r t T h r e a d - t h r e a d = % s < > n ' t j .

3 t h i s ,
A s s e r t (t ' = 3 1 .

/ *
* P.dd t h e t a s k s s p a c e t o t h e 11s: a € s p a c e s n e e d e d t o r l l n
* /

t - > s e t s p a c e s i t h i s - > s p a c c j ,

/ *
f Keep t h e i n i t i a l t h r e a d a t t h e head o f t h e L i s t
* /'

t h r s - > l o c k . i c q u l r c (I ,
:f (t h L s -) t h r e r d s == 3) i

t h l s -) t h r t a d s = t,

else !
T h r e a d * h e a d = t h l S -) t h z e i d s ;
: -)nes t = h e a d -) n a x t ,

May 2 8 10:32 1987 T a s k c Page 4

h e a d - > n e r t = t ,
t
t h i s - , l o c k . r c l a a s e () ;

Debuq("Task: : s t a r t l h r e a d : r e t u r n i n g t x \ n " . t 1 ;
r e t u r n (t j ;

ORIGINAL PAGE IS
OF POOR QUALITY

I

I

Owner russo at m.cs.uiuc.ed u
Name Switchc
Account 173
Site Dept. of Corr
Printer 24/300
SpoolDate Thu May 28

puter Science

IO: 1820 1987

JobHeader on
JamResistance On
Language printer
formwidth 132
forrnsperpage 2
outlines on

IMAGEN Printing System, Version 2.2, Serial #86:2:85
Page images processed: 2
Pages printed: 2

Paper size (width, height) :

Document length:
2560, 3328

4026 bytes

S a e a d e r ' 3viC.Ch c Y ::.? 3;/0512~ 05 5 1 3 8 z u o s 3 ESP s
S L s c k e r S

* /

* M o d i f i c a t i o n H i s t o r v .

ORIGINAU PACE IS OF POOR QUALITY -

SLog . Sv1t~h:c.v 5
t R e v i s i o n l i 3 87/05/77 5 6 : 5 1 : 1 8 r u s s o
* d o n t t u r n on d e b u g 3 i n g u n l e s s you mean it

* R e v i s i o n 11 0 37/05/11 1 5 . 4 3 - 3 0 russo
* c a n s o l e i n p u t and p r i v a t e stores

f x e v ~ s i s n 10 31 37/05/10 21 0 9 - 2 1 r.isso
a l t e r e d t o a c c o m l d a t c e a c h t 3 r e a d k e e p i n g I t s own ~ n t c r r u p t s i d c k
t h l s makes c o n t e s t i v i f c h ; n r f 5uch 3 a s i c : and much more e f f i c ~ e n t .

~ e r ; l s : o n 10 21 3 7 / 9 5 / 2 5 13 4 3 3 3 r 3 s s o
* .;se new U n i v a r j e - , l ~ a d C ~ n : - s r ; F o r m e t h i d : ' m t h i n k l n q o f ; n c l , ~ d i n g 111 I € - t .11~ 3s m e t h o d s 2 C t h e CPU oa?ect.

* R e v i j i o n 10 1 9 3 : / 0 5 / 0 4 12.44 28 i u s s l
* f i x e d probien w i t h d i s a b l i n g i n t e r r u p t s d u r i n g a s w i t c h .

f R e v i s i o n 10 3 31/04ill 16:30:48 LUSSO

f added from l i s t 3f t h r e a d spaces T h i s r emoved all knowledge o f T a s k s
el05 t h e c o i l t e x t s w i t c h i n g .

* R e v i s i o n 10 1 87/01/22 17:24:49 russo
* N % w spaces. 3 n l v e r s e 5 r n d CP'J o b : e c t r work , F i n a l l y '

+ 3evx i :on J 5 3 7 / 0 4 / 0 4 14.54 55 :us50 . : l u l t : p i e t h r e i d s and t i m e r i n t e r r u p t s .

- l e v i s i o n 3 . : 87/C4/04 J5 13:39 : u s so
* I n L t i a 1 : e ? i s i o n
* /

i n c l u d e . A z s e r t . h"
i n c l u d e "Debug. h "
i n c l u d e "CPU. h"
i n c l u d e " T h r e a d h "
l n c l u d e " s p a c e h "
i n c l u d e " u n i v e r s e . h "

* where. when. a n d i f t o d i s a b l e i t t t r r u p t s here is really l e a v i n g m e w i t h
f a rick f e e l i n g . - -Vince
* /

Debug! " S w l t c h T o (n*vThrmad t x) \a" , n e w h r e a d 1;

if(n e v T h r e r d == I 1 ncw7h:iad = K c -) i d l e T h r e a d () ;
A s s e r t (n e w h r e a d ' 0 0) ;

/ *
* Get t h e c u r r e n t T h r e a d .
*.'

T h r e a d C u r r e n t T h r e a d = K e - > c u r r c n t T h r e s d o ;

i f d c f 3 L B U G
i f (newThresd == X a - > : d l e T h r s a d (J 1

e lse if (C u r r e n t T h r e a d == K e - > i d l e T h r e a d (1 1

e l sc

e n d i f DEBUG

C P U P r i n t f ; " S w i t c h T J : f r a m : % x to:IOLO\n", C u r r e n t T h r c a d) ;

C P U P r i n t f ("SwicchTo : fr0m:TDLE to:rx\n", n e f l h r e a d I ;

C P U P r i n t f (" S v i t c h T o : Lzon: * x to: tx \n* ' , C u r r S n t T h r c a d . n e w b r e a d 1 ;

A s s e r t : CUrren tThrCad ! = 0 I ;
A s s e r t (c u r r = n t T h s e a d n e f l b r e a d 1;

': - s a v e c o n t e x t () saves t h e c u r r e n t c o n t e x t so :hit when t h e t h r e a d is
r e s t a r t e d i t w i l l a p p e a r as if ~ r ~ v c c o n t e x t ~) r e t u r n e d 0 .
The f i r s t t L i m it 1s c a l l e d i t r e t u r n s t h e new 1 n t e r r ' ~ p t S t a c k P o i n t e r

* t o d i s p a t c h t h e t h r e a d w i t h . Anothmr s i d e e f f e c t i s t h a t when it
tirsc r e t u r n s , i n t e r r u p t s a r e d i s a b l e d .

* /
e x t e r n c h a r - s a v e C o n t e x t (~ ;
c h a r i s p ;

Debug(" C a l l i n g - 3 a o c C o n t e x t (i \ n " 1;
i f (! i s p = - s a v e C o n t e x + (l 1 == 0) 1:

Debug(" S w i t c h T o : t h r e a d * x , r e s t a r t e d \ n " . C u r r c n t T h r e a d 1 ;
A 5 s e r t (C u x r e n t T h r e a d == Ke->CUrren tThread l) J .
r e t u r n :

1
Debug(" - S a v e c o n t e x t r e t u r n c d \ n "] ;

/ *
S t u f f p u s h e d on t h e s t a c k from h e r e on will be L o s t upon r e s t a r t

* /
extern v o l d D i s p a t c h (T h r e a d f 1;

currentThrcad->smrInterruptSta~kPointer(1sp 1;
O % s p a t c b (neYThr*ad 1 i
A s s e r t (NOTKLACKEO) ;

/ * ARE XNTEKILUPTS 01 7 , */

* D L r p a t c h . ICY t h r e a d n e v e r ta r e t u r n The c o n e e ~ t ot tne t h r + a d t o d i s p a t c h
is assumed t o b e on i t 3 i n t e r r u p t s t a c k .

*/
o i d
i s p a t c h (T h r e a d n e w h r c a d 3

/ n a y 2 3 io 12 1987 s v : t : a 2 ?*?e 3

i
/.

f E n t r y A s S e r t l > r . s a n d D e b u q q l n q
* /

Assert (o e w h r e a d ' = 3 :;
Debug(' D i s p a t c h (t x 1 ' i n t e r r u p t S t a c k vi11 be = is\n',

neuThread. nevThread-,IntarrupcStacnP=Ir.ter(, 1 ,

/ *
* xemember who *ere d l s e a t c h l n q . l o a d i ts ;.M c o n t e s t , and d l s p a t c h it
* /

estern v o i d - d i s p a t c h (c h a r]

l i f d c f D E B U G

l e n d i f
neuThread- ,dump(1 .

X e -) . e t ~ ~ r ~ c n t T h r ~ i d (newrhread ; ;
Me-)ur . iverse I -) L o l d C O n t e ~ t F o r 1 new7 h r e a d I

ORIGINAL PAGE E3
()E POOR QUALITY

Owner russo at m.cs.uiuc.edu
Name cswitch.s
Account 173
Site Dept. of Computer Science
Printer 24/300
SpoolDate Thu May 28 103 537 1987

JobHeader on
JamResistance On
Language printer
formwidth 132
formsperpage 2
outlines on

IMAGEN Printing System, Version 2.2, Serial #86:2:85
Page images processed: 2
Pages printed: 2

Paper size (width, height) :

Document length:
2560, 3328

4170 bytes

SHelder csw;::h s , v 11 3 87,05/21 I 5 4 3 i l ='.tsso ~ x p i
SLocker 5

* /

Xod if IC a t i o n H r s t o r y :
SLog c s v i t c h . s . v 5

R e v i s i o n 11 3 3 7 / 0 5 / 2 1 1 5 : 4 3 1 3 :USSO
* C o n s o l e i n p u t and p r i v a c e s t o r e s

R e v i s i o n 10 13 8 7 / 0 5 / 1 1 3 8 1 6 3 8 russo
* was s a v i n ? t h e wrong s t a c k p o i n t e r for r s s t a r t l d t h r e a d s i n - s a v e C a n t e x t
: € o r q o t -0 1 n c : ~ m e n t it so a 5 t? ' p o p ' sff t h e r e t u r n a d d r e s s

* l e v i s i o n 10 11 5 7 / 3 5 / 1 0 2 1 09:36 r u s s o
altered to 1 ~ ~ 3 n i c l a t c e a c h t h z e a d keeping i ts ovn i n t e r r u p t s t a c k
:his makes c o n t e x t j v i t s h l n q nuch e a s i e r and much more e t f l c l e n t

* lavision 13 > ?:/8)4/22 3 7 2 4 . 5 3 : l is io
?lev S p a c e s , 7 n i ~ e r s e i B (L ~ Z?U ob:ecrs work. F l n 3 . l l y '

f S e v i s i s n 3 9 9 - / ' 3 4 ; 3 4 1 4 5 5 3 6 russo
+ Sultiple chrsids and t i m e r 1 n t e r r . J p t . s

* S e v i s r o n a . 0 8 7 / 0 1 / 2 9 1 5 : 1 3 07 T'JSSO
- n e v arid - d e l e t e a d d e d for memory manaqement A l s o , c l a s s i n t e r r u p t 3 work

Ievision 7 0 8 7 / 0 3 / 2 5 1 2 : 4 3 : 0 5 russo
kault h a n d l e r s h i e r a r c h y w o r k s , so d o e s t h e i n t e r p r o c e s s o r s v e c t o r e d
x n t e r r . ; p i s t a f f

+ i l e 7 i s ~ ~ n 1.1 3 7 / 0 2 / 2 3 1 7 5 5 : 5 8 russo
* Initial revision
* /

/ t

* 2r.t - s a v e c o n t e s t o ;

ORIGINAL PAGE IS
OF POOR QUALITY

s a v e t h e c o n t e s t 0: t h e c u r r e n t t h r e a d and a r r a n g e :or it t o b e r e s t a r t e d
I t is .&red by p u s h i n g t h e c u r r e n t c o n t e s t o n t o its i n t e r r u p t s t a c k
I t is s a v e d i n s u c h a v a y t h a t when a n o t h e r T h r e a d s v i t c h e s back t o it
r t rill a p p e a r a s 1s t h e c a l l t o t h i s p r o c e d u r e j l m p l y r e t u r n e d ' 0 '
'When I t is r e a l l y ' c a l l e d ' ' it r e t u r n s t h e I n t e r r i p t S t d c k P o i n t c r for t h e
t h r e a d t o b e d i s p a t c h e d V i t h A n o t h e r Side e f f e c t 1s t h a t it r e t u r n s v i t h

* i n t e r r u p t s d i s a b l e d

we assume n o t h i n q b u t t h e r e t u r n a d d r e s s is p u s h e d b y a C p r o c e d u r e
call s ~ n c c our zompiler p a s s e s t h e f i r s t two arqs i n rO a n d 11
We also assume T h a t rO and 11 are v o l i t l l e r e q i s t e r r across

* p r o c e d u r e c a l l s
* /

r l o ~ l - s a v e C o r ~ t e s t
s a v e c o n t e x t -

a y 2 8 10 0 1 1387 c s w i t c h s P a q e 1

/ *
* S w i t c h s t a c k s t o t h i s T h r e a d s i n t e r r u p t s t a c k
* /

sprd s p 1 0 / * c o p y s t a c k p o i n t e r b e f o r e s v l t c h l n q * /
s p r v psr,rl / * sire psr before c h a n q l n g it * /

b i c p s r w S (0 ~ 2 0 0 c O x 8 0 0 ~ / * s y s t e m s t a c k v i t h no i n t e r r u p t s * /

n o w r l t o s 1 / * p u s h PSR * /
s p i v mod t a s
i o v d O (r 0) tos / * Pc t o r e s t a r t a t (on t o p or u s e r s t a c k) */
n o r q d S 0 , t o s / * v e c t o r number Jhould have some v a l u e */

movqd S 0 . t o s
movqd S 0 , t o s
movd r l t o s
movd r3 t o $
movd r 4 , t o s
mold r5 t o s
n o v d r6 t o s
s o v d r 7 . t o s

/ * BO when r e s t a r t e d */
/ * E l vhen r e s t a r t e d */

s p r d f p , t o s
addqd 55sI.rO / * ' pop" r e t u r n a d d r e s s :or r e s t a r t e d t h r e a d * /
movd r 0 , t o s / * u s e r s t a c k p o i n t e r */
s p r d sp.rO / * return v a l u e = s y s t e m s t a c k p o i n t e r */

b i s p s r w S(Ox200) / * r v i t c h back t o user s t a c k * /
r e t $0 / * t h e "real" r e t u x n * /

v o i d - d i s p a t c h 1 c h a r * i n t e r r u p t S t d c k P o i n t e r I

* "ranrfcr C o n t r o l to a n o t h e r T h r e a d by l o a d i n g t h e machine r e q i s t e s s
from i t s s a v e d v a l u e s on its i n t e r r u p t s t a c k and t h e n r e t u r n i n g " t o it
T h e i n t e r r u p t s t a c k p o i n t e r IS a c t i v a t e d t o do all t h e work
T h i s c a n only be c a l l e d by a t h r e a d in k e r n e l n o d e a l r e a d y .

* 3 e q i s t e r Jsage .
E O . p o i n t e r t o t h e t o p o f t h e i n t e r r u p t s t a c k 3 C t h e T h r e a d t o s v l t c h t o

*/
t e x t
g l o b 1 - d i s p a t c h - d i s p a t c h

b i c p s r v S (0 s 2 0 0 + 0 x 8 0 0) / * s w i t c h t o s y s t e m s t i c k and m i k e s u r e */

l p r d s p r 0

/ *

/ * i n t e r r u p t s are d i s a b l e d (b e c a u s e * /
/ * I n p a r a n o i d) * /

t h i s c o u l d be a l l t t l e c l e a n e r if i t s t o o s l o w The b1g problem
* is t h a t t h e FIRST t i m e t h i s is c a l l e d t h e i n t e r r u p t s t a c k 1s

a l r e a d y a c t i v e
*/

I ORIGINS PAGE T!?!
OF POOR QUALITY

Owner russo at m.cs.uiuc.edu
Name Excepti0n.c
Account 173
Site Dept. of Computer Science
Printer 24/300
SpoolDate Thu May 28 102 1 :02 1987

JobHeader on
JamResistance On
Language printer
formwidth 132
formsperpage 2
outlines on

IMAGEN Printing System, Version 2.2, Serial #86 : 2 : 85
Page images processed: 2
Pages printed: 2

Paper size (width, height) :

Document length:
2560, 3328

3 2 5 9 bytes

8
m

I

1 , I ircl'ide 'AsSeTt h"
9 1 i c l . i d e "3ebua h "
IlacLide Thr-ad h"

! I include "CPO h "
I include '-Exception h"
I incL.ide "Frame. h ' j Iinclxde 'Scheduler h"

CPUPriat:, 'Exceptmn ;post, 5 x) \ , n " , frame ! ,
Asseztl POTREACHED 1 ;

1

IsystemEx:eption SyscemExFcption(XandlerFunction theliandler 1
!

A s s e r t t theHandler I = 0 I ;
thls-)handler = thenandlcr;

I
i I SyjtePrxception -SystemExceptloni 1
!

Debug("SystemException- --SystemExceptionr) \n" 1 ,
Assert XOTSEACHED :

I

I ~ ~ : L x c e p t i o n : :port(struct F r a m e frame 1
I

Debug("SystemExceptlon: 'post: 0.) \ n " . frame I ;
Assert(thii->handler ' = 0 I;

: * this->handler) (frame)

:ORIGINAL PAGE TS
OF POOR QUALITY

Kay 2 8 10 J2 1987 Exception E ?age 1

I
Debug("Systemcscmptron post returnlnq\n') .

I

InterrupcException InterruptExceptionc)
I

t

InterrupcException -1nterrupcExcept i ~ n (1
(
t

this->awaiter = 0

/ / Probably should have locks in d lot of the stuff here ' I '

i id
IterruptException.:post(struct Frame f rame 1

Debug("InterruptEsceptlon: post(I s 1 this %x\n", f r a m e , this 1;
Assert(this ' = 0 1 ;
Assert(frame '1 3 I :
Assert, Me->currentThre&di) I = 0 I ;

/ *
* 1 f no-one 1s a r a ~ t i n q the event , return to who was interrupted:
*/

if(this->awalter == 0] (
CPuPrintf ("Dn-awaited InterruptErception\n") .
return;

1

/ *
* Arrange for the CUIrent thread to he restarted where it was
* Interrupted.
* /

Xe->currentThread()-~5etInttrruptStackPointer(char 1 frame) .

/ *
Ue are not r e a l happy with this, probably the idle thread
SBOULD be enqued, but with :he lowest p o s s i b l e priority.

* /
i f ! I(e->currentThread() ' = ne->idleThread() 1 (

hrrert(Me->schedulero I = 3 I :
Ie-~rcheduleril-).dd(Ke->currentThreadi 1 I ;

I

': Dispatch the thread awaiting the event.
extern void Dispatch(Thread 1;

Thread * t = this->araiter.
this->awalter = 0;
Dispatch(t 1 ;
Assert(NOTREACHED 1;

* /

I
I
I
8
I
1
8
I
8
8
I
1
I
I
I
I
8
I
I

Owner
Name
Account
Site
Printer
SpoolDate

russo at m.cs.uiuc.edu
Fa u It H a n d le rs.c
173
Dept. of Computer Science
24/300
Thu May 28 10:21:56 1987

JobHeader on
JamResistance On
Language printer
formwidth 132
formsperpage 2
outlines on

IMAGEN Printing System, Version 2.2, Serial #86: 2: 85
Page images processed: 2
Pages printed: 2

Paper size (width, height) :

Document length:
2560, 3328

7021 bytes

I
8

* EaultHaadlezr i

$Header P*ulcBandlers c , ? 1 1 5 a i / O 5 / i 4 23 1 3 21 :USSO ~ x p $
$Locker I

* /

* nodification hlstsrl

r Revifion 1 1 5 3 7 / 3 5 / 1 4 23 13 21 r'1sso
* ==.e t w o argllsent space. map

* Xevi6:on 11.4 37/05/24 16 45 33 russo
* clran~ng i p

 LO^. E a u i t S a n d l e r s . ~ . ~ 5

Xevision 11 1 37/05/24 0 5 03 23 zu5So
* i n the middle oC re-doinq fault handlers.

* Re71eion 11.1 97/05/21 15 54 39 K'JSSS
* C33501e l a p u t did ?ri7ate StOCeS

* levision 10.2 37/94/22 20 4 4 12 T'ASSJ

* 3 e t space containing the faultlrg addrsss f rom t2.e 'Jnl7e:se

Re71iion 10.0 37/94/22 07.30 13 riisso
* New Spacen. 3ni7er5es and CTU ablects work F i n a l l y '

f Revision 9.0 37/04/04 15:12.23 r11sso
m l t i p l e threads and timer intezrupts.

* Rev~si?n 3 0 37/03/29 1 5 : 1 3 . 4 0 russo
* new a x i -delete added Cor memory manaqcmeit. Also, c l a s s ~nterruptr work

* Xevieion i 3 ?'/33/25 12.49.30 TUSEO
* Fault handlsr hierarchy works. 50 do-s intcrprocesssr vectored Lntezrupts

* Xev:ston 1 1 87,'33/19 ?7:16.;2 1ohnston

./ Initial :cvxsion

ORIGWAU PAGE IS
OF POOR QUALITY

I Lnclude
I include
1 Include
'include
,include
I include
I include
I include

'Debug h "
'P.ssert h '
..l,.M h,,
'store h"
' S p a c e h"
"CPU. h '
"mi-tuneable h"
"md-tuneable h"

I .

* common code Cor all subclasses of FaultRandler.
* /
roid
~~ultEandler..f1xFaulEI Space space. void * address 1 I

/ *
* Eventuallp this should do the equivalent of the UNIX SICSEGV

!ay 23 10.01 1987 FaultRandlers c Page 2

+ and terminite the T a s k
* /

PrrntC("F&ultEandler. taLC&Ult(spica % x address \I), thir=%x\n"

Assert(NOTBEACEED I,
space, address, t h i s I.

1 .

StoreManages c l a s s .
* /
Storenandqer storenanaqcr(Store store I
i

Debug("Storenrnigtr::StoreUanigerl store:\x) . th15 = kx \n" ,

Assert(t h i s ' 5 0 I ,
Assert(store 'I 0 I ;
thir-)rtore0einqManrqed - store;

stare this 1;

I

Xorelanaqer. . -Storsnumqer(
I

Debug('StOr~H6UlgeK::-StOr.~~n.g~S() this = tX\n", this I ;
A s s e x t i N O T B U C E S D I;

I

70 Id
StoreManaqer Cixlault(Space s p a c e . void address !
I

s p a c e . address. t h i s 1;
Debug("StoreH6UqOS: : CixFaUlt(spaCe'\X addstsr: I X I : this = bx\n",

Assert(space ' = 0 I;
Assert(sprcc-)isInc address 1 I :
Assert1 this ' = 3 I;
Assert(this-~st~re~einqnanagcd ' = 0 j :

void frame = thir-rstorcBeinqH~n~ged-~~llocate(I I ,
void paqe = ,void * I Paqelloorl Iddress) ;
Debug("Storenanager: : CixFault: paqc-ax , frme=rr\n". page. frame 1;
spac*->map(page . frame j ;

t

/ *
Common code f o r all subclasses of DemindlillriultBandler ;allocateAndHap)

Demand till fault handlers are those that, upon I f a u l t , allocate a page
* from thm store, map It i n t o the V?l S p a c e . and the f i l l It w i t h something.

What they fill r e w i t h depends on the partleulrr sub-class of
DcmindCillFaUltEandler being referenced

*/
r o id
DemandFillF~ultBandler::allocrteAndn~p(Space s p a c e , vnid address I
I

extern Store Mainstore:

Debuq("DemandFIllFB : allocatcAndMap(space.rx address: + X I . \ n "
address, space 1 ;

enandF il:e:,:: % i s ? a u l tiiindler
~ r n a n d ~ r l i e r C l ~ ~ i F i u l : ~ ~ ~ d l ~ r ~ F i l l t r * f r l l e r , ,.

f Allocate space for stite :nfornatron

* COUNTING SINCE XE REALLY lONT ENOW WHEN TO DELETE ONE
- 'aE IBC'JLD CXCK FOR DUPLICATES TS SXE $PACE A N D ALSO 30 REFERENCE

f Demand f i l l !using 1 Filler) CauLt handler subclass fixFau1:II r o u t i n e
AllOClte 1 page from :he s t o r e map it In t a the Tasks VM, ~ n d the

* call the € l l l * r members flllPaqc(, member fu:ltion t o Initidllze the p a g e .
* /
0 Id
emandFille~ClaS2FdultE~ndler fixElulCt Space * space, void * address 1

3ebug("DemaodF:ll~rCLaszFH flxF*ultI s p a c e . b x address*x). thl~=hx\~D"
space address t h i s I :

ORIGINAL PAGE Is
OF POOR Q U A L m

.lay 2 8 15 02 1987 FaUltBand1ezS.c 213e 4

11locareAndXapi s p a c e . rddr55s , ,. - Call the C i l l e r r f i l l P i 3 2 sembcr Cuncrlon to 5111 in the p a g e
* /

Debug("DemaDdFi?lerCLd.SF~'~ltH~ndler. : f:xFauit calllnq filler\n" 1
filler-~fiilPage(address 1
Debug(" D c m a o d F i l l c r C l i s s F a ~ - t H ~ n d l ~ ~ . : fixfault returninq\n" 1 ;

i

I .

The c3nstxuctore for t h e subclass of demand fill fault handler that f l l l s
* the Caultinq p a g e v i t h z e r o s ./

DemandZ~:OFlultHandler DemindZer5Fi~~ltE~ndlcr(1

I .

* Allocate space for state information
* WP SBOULD CEECK FOR DUPLICATES TO SAVE SPACE AND ALSO DO EEFERENCE
* COUNTING SINCE WE REALLY OONT KNOW WKEN TO DELETE ONE
* /

Assert! this ' = I 1 ;
Debug(''Dem~UdZe~oFa~ltBdndler~~Dcm~ndZeroF~ultEand'ee t h i s = t q n ' .

this 1;
1

/ *
The destructor €or t h . above

* /
Dem.ndZcroFaultBaadler: 'Dem~ndZeroFaultEandler~ 1
1

1
Printf ("DemLndZe~?FaultHdndlcr destructor c a l l e d ' ' , \ n " 1 :

I .
I -

* The LixFault r o u t i n e f o r DemandZtroFauLtEdndler Th:s ca;ls the parent
* :lasses allocateAndllap0 member function to 3ec a page and makt it
* addressaule Then it simply fills t h e Icv p a q e w i t h zeros .
* /

vo rd
DemandZeroFaultHandler: flLFault: Space s p a c e void address 1
I

Debug("DemandZeroFE: fixFault(s p a c e k x dddressIx , . Chls=tr\n",
allocaCeAndnap(space. address i i

/ *

s p a c e , address, :hls I :

* Calculate the bise add=-ss oC the paqc and f i l l it w i t h zeros
* /

extern void C l + a r n e m o r y (.:old unsigned i :

sold virtual8are = (v o i d * I P a g e F l o o r ! iuns:gned) address 1 .
Debug(" D e m a n d Z ~ r O F d l l l t H L n d l e r fixFIu1t: Clelrnernory! Zx , 3 1)\n'

ClearKemory(virtual3asc PAGLSIZO) .
Debug("DcmandZ.:OFallltKindler f 1xLFault: eeturnlng\n" I ;

VirtualBase. PAGESIZE 1 ,

I

Owner
Name COFFRout ines.c
Account 173
Site Dept. of Computer Science
Printer 241300
SpoolDate Thu May 28 10:25:37 1987

r usso at m.cs.u iuc .edu

JobHeader on
JamResistance On
Language printer
formwidth 132
formsperpage 2
outlines on

IMAGEN Printing System, Version 2.2, Serial #86:2:85
Page images processed: 3
Pages printed: 3

Paper size (width, height) :

Document length:
2560, 3328

9 9 4 1 bytes

a y 2 3 ii 1 2 ; 9 8 7 C o E F E a ~ t i ~ e s c ?age I

* C3FFBoutines.:. rou::n=S :a d e a l w i t h :e:tlng ' ~ p I space E O b e 1 ~ a d e d
f r D m d U N I X C O F I C3mmon Ob:ect ? I ~ P Format) imiqe

SiIeader: COFFROUtlnCs c . v 1 1 . 4 37/05/27 0 5 . 3 1 ' 1 9 T ~ J S S O Exp 5
$Locker. 5

*,'

* Bevision BlStOKY

Kcv151on 11.4 87/05/27 05:34:13 K U S S O
 LO^: C3FFRoutines.c,v $

* debug o f f

* Keviiion 11.3 8 1 / 0 5 / 1 5 05:41:21 KUISO
debugging on

* Revision 11.2 97/05/24 1 1 : 5 4 : 3 8 suss0
i p e l l i n g % K S O S

- 3%715101 1; 1 9 7 / 0 5 / 2 1 : 6 . 4 i 3 4 :'usso
* ~~:::hed to new space iiL3ca:e z o u t i n ~ s .

* KevisLon 1 1 0 37/05/21 1 5 . 5 i . 2 i russo
* C ? n s o l e i n p u t and private stores

* Revision 10 3 37/04/22 0::18 3 3 IUSSO
* New Spaces, Unlverscs and CPU ob3ects vork , Finally'

* Revision 9 0 97/04/04 1 5 12:17 eusso
* Kultiplc chreads and timer LnterIupts.

* K e i l i i ~ n 8.0 81/03/29 15 3 3 . 3 5 iusso
* n e w and -delete added f o r aemorp management A l s o . class ~nterrupts 'work

* ReoLsion 7 . 0 9 3 / 0 3 / 1 5 12 4 9 05 russo
FaClt handler hlSKaKChy w o r k s , 5 0 does lnterprocessor vectored Interr.Jpts

Bevision 6 1 97/03/22 17 5 5 4 5 rusio
* Initial Rev,ision
* /

include "Debug. h"
include " F i l l e r . h "
include "FaultEaedler. h "
include "Fl1e.h"
Include "space. h "
include "md-tuneable. h "
include "/usr/include/a.out h"

old bcopyi char *, char * . int ;;

ypedef void I * A P F V l (1 ;

* Setup a space to be demand CLllad €rom a COCF Image i n 1 F z l e
*/

ORIGINAL PAGE IS
POOR QUALIm

PFV
etupSpaceFro~or1Image(Space * space. F i l e f i l e 1

/ *
THIS IS A LOT 01 STUFF TO PUT ON TEE STACE. IS IT TOO MUCR'7

* /
union 1

struct filehdr : ilehdr;
srruct routhdr iouthdr;

t u;
struct scnhdr scnhdr;
int filePointer = 0;

Debug("SetupSpaceFromCOFrImaqe~ % x , 8 x) \ n " , space. f i1e 1 ,
Assert(space ' = 0) ;
Assert(f i l e I = 0 I ;

/ *
Bead t h e t i l e header and check it it's ok (magic = NS32GW.GIC)

-/
Debug("s~tupspacerrororrlaaqe: Keading f i l e header\a" 1 ,
f ~le->readRecords(filePointer, (char *) bu. tilehdr.

filePointer += s i z e o f (struct tilehdr I;
i f (u.tilehdr.f-magi~ ' = NS32GMGIC 1 I

s l Z s o f (struct tilehdr 1 I;

Printt("SetupspacsFronCOrTImage: Bad rile K a q i c Number rx\n ' ,

return((A P W) 0 1;
u. t i lehdr . f-magic) i

1

/ =
* Bead tbe ..out header f r o m the t i l e . then read the .text. data.

and .b5s section header. and remember the useful bits of
* information in each.
* /

Debug("setupsp.cerromcorrImage: Beading &.out header\n" I .
file->readRecords(f:lePointer, (char * 1 bu.aouthdr.

fllePolnter += sireof(struct aouthdr I ,

Cebugi "Sat~~pSpiceFronCOCrImaqe: Beading text section header\n" 1 .
flle-~readKecords(filePointer. ,char * I brcnhdr,

s i z e o f (struct rcnhdr I I ,
CilePotnter += sireof(struct scnhdr) :
long textScnPtr = rcnhdr.s-scnptr;

Debug("SatupSp~ceCromCOFFImaqe: Reading data s e c t i o n header\n" 1 .
flle->readBecordsi tilePointer. (c h a r * I brcnhdr.

s i z e o f (struct scnhdr 1 1 ;
filePointer += s i z e o f f jtruct scnhdr) ;
long dataScnPtr = scshdr.r-scnptr.

Debug("satupSp~ceFromCOFFImaqe: Reading bss section header:n" 1 .
file->readRacords(tilePointer, (c h a r *) bscnhdr.

filePointer += s i r e o f (struct scnhdr I:

s i z e o t (struct aouthdr) : ;

s i r e o f l struct scnhdr I 1 ;

/ *
f C a i c x l a t t t h e r d d r a s s e s a a d 5 ; ~ ~ s a € of tile i e c r i o n s
* The $ a t % a n d 5 5 s s e c t i o n s a r e a s s u m e d t? be 151t:?c5.:3 3r.d a r e
* a r ? t r e a t e d a 5 one sec t :on
* /

A P N e n t r y P o i n t = (A P W j 3 a o u t h d r e n t r y
v o i d * t e s t S t i L t = , v o i d *) 1 a o u t h d r t e : < t - S t d r t .
v o i d * d a t a s t a r t = (v o i d *) 1 . d o u t n d r d a t a - s t a r t .

Debug('SetupSpa:eFromCOFFImags. t a s t S t a : t = \ x , d a t a i t a r t = k z e n t r y = *x\,n" ,
t e x t s t i r e d a t a s t a r t 5 n t r y P o i n t '

A s s e r r : , (a n s ~ g n e d) t e x r S t a r t 9 ? A C E S I ' . E l == 3
A s s e r t : ' u n s i ~ n e d l t e x t 3 t a r t) = TASKLOWADDR .
A s s e r t : : u n s i g n c d > t e s t S t a r t (TASKXIZHAD3R
A s s e r t : , (d n 3 : g n c d) d a t l S t a r t 9 ??.CESIZEI == 9 i
A s s e r t (,uns:g?.td d a t a i t a r t > = T P . S Z L 9 W A D 3 R ,
A s s e r t (i u n s i ? r . a d d a t a i t a r t (P h S K S I S H A D 3 R

1 3 C t e x T B i z t = u d o u t h d r r s l z e ,
:at t * s t ? a q e s = - .esr ; ize P.XGFS:ZE
i € , t e s C S i z e I PACESIZE j ' = 0 [

I
A s s e r t 1 u n s i g n e d l : t e x t i t d Z t i : e x r S i i e) (T . A I G H I Z A A 3 C R , .
A s s e x t (. c h a r * j a n t r y P ? l n t > = t e x t s t d r t I ,

A s s e r t (r c h a r *) e n t r y P o l n t < = (t e x c S t l r C t t e x t S l Z e I j ,

i n t d d t i s i z - = u i o u t h d x d s i z e + u a o u t h d r b s i z e .
i n t d a t a p a g e s = I d t i S i z e / PACESIZE,
I€ (, d a t a s i z e t PACESIZE) ' = 0 (

1

t e z t P i g e s + +

d a t a P a q r s + +

A s s e r t : i u n r i q n e d] (d a t i S t a r t + I a t 3 S i z e) < 7ASYBI;HA5D3 , ,
D+bu;' 'SecupspaccFromCOFFIm~~e t e s t ; l z e = * : ~ . C r s t P a ? e s = \ d \ n '

Debug, ' P e t l ; p j p i c ~ F ~ ~ m C O F F : m * q e d d t a S ize= * % , d a t r P a ? r s = I\?''
t e x z S i z e t e s t P a ? e s ,;
d a t a s L z e d a t a p a g e s , ,

/ *
* B u i l d a f a u l t hand151 €or t h e . t e s t s e c t i o n
* /

Debug('SetUpSpaceFromC0FF:maqe B u i l d i n g t e x t i e c t ~ o n € i l l e r \ n " 1 ;
C O F F S e c t l o n F l l l e r t e x t F i l l e r = new CCFFSec t ronF : l lOr (tile. t e X t S t a T t .

t c s t S i z e . C e x t S c n P t r j ;
Debug: ' t e x t F l l l 5 r I k S \ n ' ' , t e x t f i l l e r 1
A s s e r t (t e x t F i l l i r ' = >) ,
Debug(' S e t ~ ~ p S p a c t F r o m C O F F I m a g r . B ? I i l d i n q t e x t f r u l z h a n d l e r \ n ' j ;
D e m a n d F i l l e ~ C l a i ~ F a u l l t g l n d l e r t e s t F a u l l H a n d l e r =

Debug(" t e s tFau1 :Rand lPr = %S\n ' , r e x t E a u l t H a n d l e r j
A s s e r t (t e x c F ~ u 1 : B a n d l e r ' = I j .

/ *

new D e m a ~ d F i i l e ~ C l d ~ ~ F ~ u l t H ~ ~ d l e ~ (t escE: l l s r i .

* A l l o c i t c t h e pages :or t h e t e x t s e c t i o n a n d i z s t 3 l l t h e

a y 2 8 1 0 0 9 1 9 9 7 COFFRoutines c P a g e 4

f a u l t h a n d l e r c r e a t e d i b o 7 e F a u l t h a n d l e r s s h s u l d p r o b i b l y
f b e deleted by t h e s p a c e d e s c r u c t o r v h a n I t IS €lll;y I m p l e m e n t e d ,
* b u t t h e y also may need t o be de le t ed v h e n t h e y a r t no l o n g e r
* n e e d e d . F o r t r a m p l e , i f all t h e d a t a h a s b e t n f a u i t e d i n . the

f a u l t h a n d l e r t o l o a d it is n o longer c e e d c d s i n c e 111 of t h e
d a t a p a g e s w i : l h a v e c h e r t fault h a n d l e r s r e p l a c e d b y some for9

f o f s w a p p i n g f a u l t h a n d l e r IC t h e i r memory 1s r e c l a i m e d . C r l n t e d ,
* i C a c l t a n p a j c IS :hoSen f o r r e p l a c e m e n t c h e o r 1 9 l n i l f a u l t
* h a n d l e r w i l l r t r l l D e n e e d e d t o r e z l a i m I t v h e n n e e d e d .
* /

Debuq: " s e t u p S p a ~ t F r o m C O F F l m a q s A l l o c a t L n g t h e tsst p a g e s \ " ' j ,
c h a r t e x t = Icsdr *) s p a c e - > a l l o c a t e (t e x c S t d r t t c x t P a q e s .

D e b u g (" S e t u p s p i ~ c F r o m C O F B I m a g s : t e x t = t x \ n " , t e x t j ;
A s s e r t (t e x t ' = 3 j ;

t ex tFau1 :Band le r . f a u l t I n j ;

/ *
* B u i l d t h e fault h a n d l e r for t h e . d a t a a n d . b s 5 S e c t i o n
.I

Debug(' s e t u p s p . e e F ; o m ~ o F F I m a q e . B u i l d i n g d a t a a n d b s s f i l l e r \ n " I ,
C 3 F F S e c t 1 o n F l l l e r * d a t a F r l l e r = mew C o F F s e C t l O n F i l l e r i f l l e , d a t a s t a r t

d a t a s i r e . d a t a S c n P t r i ;
D e b u q , ' d a c a F i l l e r = 8 x \ n ' , d a t a l i l l e r) .
Asse r t (d a t a r r l l i r .= 1 I :
Debug(' S e t u p S p l c c F r o m C C F F I m a g e . B u i l d i n g d a t a bss f a u l t h a n d l e r \ n ' j .
D e m a n d F i l l e r C l I ~ i r i u l t a l n d l c r * d a t a F a u l t H a n d l e r =

Debug(' d a t a F a u l t E a n d l e r = t x \ n ' , d a t a F a u l t H a n d l e r 1
new D c m ~ a d F i l l a r C l a r s F ~ u l t H ~ n d l e : ~ d a t i F i l l e r) ,

A s s e r t (d a t a F a u l t E a n d l e r ' = 5) i /.
A l l o c a t e t h e pages for t h e . d a t a a n d b s s s e c t i o n s ~ n d i n s t a l l t n e

* CaUl t h a n d l e r c r e i t 5 d a b o v e .
* /

Debuq(' s e t u p s p r c e F r o m C ~ F F 1 m a q . - A l l o c a t i n ; t h e d a t a p a g e s \ n ' j
c h a r * d a t a = ' c h a r j s p a c e -) a l l o c a t e i d a t a s t a r t d a t a P a g e s ,

Debug1 "setupSp~ceFromCOFFImaqe. d a t a = ,s\n', d a t a , .
A s s e r t (d a t a ' = I j .

/ *

d a t a C a U l t R a n d l e r t au1 t :n

* R e t u r n t h e entry p o i n t a d d r e s s f o r t h i s Space. T h ~ s v a l u e is
p a r s e d t o the Task c o n s t r u c t o r rrhen i t 1s c a l l e d .

* /
Debug("Setu~Pp~ce?romCOFF?ma~e: r e t u r n i n g % x \ n " , e n t r y P o l n t) ;
r e t u r n (e n t r y P o i n t I ,

1 .

* C o n s t r u c t o r t o ti11 i n t h e i n t e r n a l f l e l d 5 of a COFF S e c t i o n f I 1 1 e r
*/

: O F F S e c t i o n F i l l e r C O F F S e ~ t i o n F i l l e r F i l e * file. v o r d * S t a r c ,
r n t size l o n g l o c a t i o n 1

[
/ *

f E n t r y A s s e r t i o n s a n d Debuqq inq

I) S ~ ~ ~ ~ U C Z J K :or COFFSec t ion fillers. DONT d e l e t e t h e f i l a h e r s (1 t h i n k ' !
* /
: ~ ~ s e c f : a n F : l : . r ~ c O F F S a c t ; ~ ? . F : i l + r ~

? T :at f " 10 FFS ec t 13 nF i l l e r :e s t :'ic t J z c I 11 ed ' ' x, n '

3 I d
: F i S e c t i o n F ~ L . e r f i 1 L P a y e l ',old * f a u l t i n q A d d r a s s 1

/ *
* round f a u l t i n g a d d r e s s down t o i t s e .33~ number .
* /

Dabuq! " C O F F S e c t i O n F i 1 l a r . : f l l l P a g c (%xI'..n' ' . E a u l t i n q A d d r e s s 1
v o ~ d * v : r t u a l 9 a s e = : 7 0 1 d *) PaqeEloor' u n s i g n e d) f a u l t i n 3 A d d : i s s) ,
3ebrr3(C ! J F F S e c C i o n F i i l e r : . f i 1 1 P a q e . 7 i r t u i l B a s e = t x \ n " . v i r t l i d l B a ~ e I

I '

* :OPT i n t h e p a g e r d a t a from t h e COFF s e c t i o n
* /

; n t vh:chOEfsec = i n t i V i r t u a l B a s e - ~ n c l i e c t i o n S t a : t .
i o n 3 source = f i l e l o c a t i o n * ' w h i c h O f f s e t .

* SHOULD F I L E LOCK TEE XEADS AND WBITES HERE"
A L S O . WHILE In 7 E I N Z I N G AB3WT IT 'm0 DELETES THE F I L E "

* : :BINL: :CFFSpace shauld be a subclrsr of t a s k ;pace and L C S d e s t r , ~ c t o r
f s h o u l d d c l r c t h e c o f f f i l e
* /

Debuq("COFFSec t ionF i11Cr : . f l l : P a q e : J f f s c t k X i n S e c t ~ O n ' a d d r = t x) \ n " .
Y h i c h O f t s e t , ~ 1 r t u a l B a r e 1 ;

I C [souzce > [C i l c L o c a t i o n + s c c t i o n l e n q c h 1 ! [
e x t e r n v o i d C lea rMemory(v o i d * , i n t) ,
Debuql ' C O F F s e c t I o n F i l 1 c r ~ f l l l P a q e : : i l l i n q with z e r o s \ n " I ;
C l e a r n a m o r y (r i r t u a l B a r c . PAGESiiC 1;

e lse I
Debug(' C O F F S e c t ~ o n F i l l c r . : f 1 1 1 P a q e : copp:2q i n paqe \ ,n ' ! ,
f i l e - ~ r c a d R e c ? r d s i sou:ce~ (c h a r * 1 r l r t - - d B a s e PAGESIZE I :

ORIGINAL PAGE IS
OF POOR QUALITY,

~y 2 8 1.3 01 1 9 8 7 C 0 P E B o ~ t i n ~ s . c Pig. 6

5ebug(" C O r C S e e E : o n r l l l e r ~ : f r l 1 P a q e : r e t u r n i n q \ n " ,

* c o p y ' c o u n t ' b y t e s from "from" t o " t o " Replace t h i s w i t h 1 n i c e l y o p t i m i z e d
* ~ssembly l a n q i a q a v e r s i o n s o a n t u a l l y
*/
a i d
zopy(c h a r fr=nt, char to. i n t c o u n t)

w h i l e (c o u n t * = 0 i [
*to++ i *from++;
count-- :

t

Owner russo at m.cs.uiuc.edu
Name Goon 1ine.c
Account 173
Site Dept. of Computer Science
Printer 24/300
SpoolDate Thu May 28 10:12:00 1987

JobHeader on
JamResistance On
Language printer
formwidth 132
f ormsperpaqe 2
outlines on

I t A G E N Printing System, Version 2.2, Serial # 8 6 : 2: 85
Page images processed: 2
Pages printed: 2

Paper size (width, height) :

Document length:
2560, 3328

5607 bytes

I

D e f a u l t e x c e p t i o n h a n d l e r u n t i l t h e k c r n c l installs v h i t I t v a n t s .
* T h e r e SECULD b e no e x c e p t i o n s u n t i l the k e r n e l 1s r u n n l n q a n d d e c i d e r i t s

r e a d y
*/

e x t e r n v o i d U n c a u g h t (s t r u c t Iran0 * 1;
S y s t e m E s c e p t i o n J e f a u l t E x c e p t i o n i Uncaugh t J ;

/'
A Lock t o a c b i t r a t e k e r n e l C r e a t i o n , dud L p o i n t e r t o t h e l n l t r a l k e r n e l
S p a c e . T h e p o i n t e r is s e t by the processor r h a t c r e a t e s i t a n d s h a r e d b y a 1 1
p r o c e s s o r s .

* /
s t a t i c Lock k e r n e l L o c k ;

I
8

I
8

I
I

, x * y 2 3 :3 3 1 1997 : o O l l l n s c ? * ? e 1

' I *
* C o o n i i n e c FITS: Z ; r n q u a q e z 3 u t ; i e :al;$d 3y each p r o c e s a r i f t e r d o i n q

1 n 1 t : a l l r i t : s n S?:c i n a L s o p ~ n d ~ a : t Lor a n r n i t a l t h r e a d
t2 be added t o t h e z c n e d u L ~ r 2 3 : - 3 n e 1s :here s w i t c h c o n t r o l
t3 ~t rnd p r a y w e SEVER : - t u r n .

i a e a d e r : G o o n l i n e c , v 1:.l 5 7 / 0 5 / 2 1 1 6 57 5 7 r u s s o ~ x p $
5 L o c k e r ' 5

/
* R C V I S I O ~ ~ i s c s r y :

~ c v i r i o n 11 1 8 7 / 0 5 / 7 1 1 6 : 5 i : 5 7 russo
, CPW neabcr c h a n g e d names

I : R e v i s i o n 1 1 0 9 7 / 0 5 / 2 1 1 5 : 1 2 : 4 9 r u s s o

s i o q . 3 o O n l i n e . c . v 5

C o n s o i e r n ? u t and p r i v a t e s t o r e s .

* a e v i i i o n 1 3 13 3 7 / 9 5 / 1 3 0 6 3 5 3 3 L (~ S S . O

* t 3 o k 9u= s e r S s c - p t r o n for ~%qOLZ-.,'eCror

* R e v r j i o n 15 1 1 4:/35/:2 1 7 3 7 11 r r i s s o
* s e t j p t o be c a l l e d by t h e gc rms i n l t l a i t h r c l d

* R e v i i i o n 1 5 3 5 4 7 / 0 5 / 0 2 1 5 4 2 5 4 russo
f s p l i t into a qern h a l f i t h i s) and 31 k e r n e l h a 1 f : K e r n c l E n t r y i

* R e v i s i o n 13 2 3 8 7 / 0 4 / 1 0 1 6 0 9 2 1 rYSs0
* b u i l d a p r i v a t e I n t e r r u p t Z r c e p t l o n for t h e c l a c k a n d and i n t i a l t h r e a d to

h a n d l e t h e c l ? c k i n t e r r u p t D i s p a t c h = h a t t h r e a d I t w i l l a v a i t , t h e
e v e n t mechan i sm s h o u l d r e s t a r t t h e i d l e t h r e a d . when t h e i n t e r r u p t

* O C C I L T S t h e c l a c k z h r e a d s h o u l d run a g a i n . : * s e t t h e c l o c k , a n d await t h e
* : n t c r r i l ? c * g a i n .

* R e v i s i o n 1 0 1 5 9 ? / 3 4 , 2 8 10 3 5 - 5 0 r u s s o
* b u i l d a default e x c - p t r o n h a n d l - r and i n s t a l l i t L o r all v e c t o r e d c x c e p t i a n s
* Then r + - ; n s t a l l the p r s p e r ones for t h o s e we c a r e dDout

* R e v i s i o n 13.0 8 7 / 0 4 / 1 7 0 7 . 1 4 : 4 1 r u s s o
New s p a c e s , U n i v e r s e s and CPU o b l e c t s v o r k , F i n a l l y '

RevIs:On 9 0 8 7 / 0 4 / 0 4 1 4 . 5 4 . 4 8 russo
* M u l t r p l e t h r e a d s and timer i n t e r r v p t s .

* Rev:sion 8 0 8 7 / 0 3 / 2 9 1 5 : 2 7 . 1 7 russo
* n c v a n d - d e l e t e added for memory a a n a q e m e n t . A l s o , c l a s s i n t e r r u p t s work

* Rev:slon 1 . 1 8 1 / 0 2 / 1 3 1 8 . 1 1 . 1 8 Z U S S O
* 131tzal r e v i s i o n
'/

i n c l u d e " A s s e r t . h"
: n c l u d e ' 3 c b u u . h "
i n c l u d e 'md-:uncable. h "
i n c l u d e ' T h r e a d h "
i n c l u d e ' l r c s p t i o n . h"

ORIGINAL PAGE IS
.OF POOR QUALITY

S a y h e l l o O r a c l e
* /

Asse r t (ne . = 0) ;
Priatf(' T r o c e s s o r 8x is on1:nc ,ID=tsJ\n", Ke-~id(l, I D : i

': S a n i t y c h e c k s o f the b o o t c o d a

A s s e r t (!le->id(J == I D I ;
A s s e r C I M e - > u n i v e r s e l J ' = 0 3 ;

A s s e r t (X e - r i d l e T h r e l d i I 'I 0 s . ,,
A s s e r t (n e - > c u r r e n t T h r e a d (J * = 0 I ;
A s s e r r (n c - > c u r r e n t T h r e a d () == K e - > l d l e T h r e a d f I 1 ;
A s s e r t (n e - > s c h e d u l e r i) == 0 1:
A s s e r t (n e - > t h r e a d T o D e l e t e () == 0) i
A s s e r t (n e - > p r i v a t e s t o r e l) ' = 0 1;
A s s e r t (l 4 e - > g l o b a l S t o r e () ' = 0 1;

e x t e r n int I n t e r r u p t s D i s a b l C d (: ;
A s s e r t (: n t e r r u p t r D i s a b l e d l J I ;

/ *

* /

I n s t a l l t h e i n i t i a l (d e f a u l t) c x c c p t l o n h a n d l e r s A g a i n , no
f e x c e p t i o n s s h o u l d happen u n t i l t h e k e r n e l i s s x e c u r l n q .
. I

c- -&,

Debugr " C o o n l i n e : I n s t a l l i n g d e f a u l t i p a n i c) e x c e p t i o n r \ n " I . !

n3 Q I 3 :71 L. t 3: r . i E :: : i F. f I 3 1 s
i , . a e f l u i t E x c ' p z : 3 n

I - -
/ *

* '155t t o see L: t n e 6e:rel h a s b e e n b u l i t '(et t n d :f nof b u x l d i t .
* I f i f has bee2 3 u : l t someone ~ l s e h a s b e e n here f i r i t .
* I n t h i s case jest S x i ? t h e c a l l . : e l r a s e t h e lsck a n d c o n t ; n d +
* ,/

k e r n e l L o c k acqu1:e: , ,
I f (I n l t 1 a l K e : n c l S p a c e = = 3 ! {

Debug{ ' C o O n l r n e b u i l d i n g I n r t i a l K a r n e L S p a c e ~ ~ n " , ; /.
* B u i l d t h e i n i t i a l S e r n + l
. I

e x t e r n c h i r 'J::tualPr:vafeMemo~y:

ne:Sza:t = 'Ji:tuil?:i7itevemo:y - 3 x 1 3 O c 3
I P ~ S ~ ~ ? P = new X*:nP:5pace; X e -) 7 1 3 b a i ; t ~ r e , ,
z?.eiS:3rt ; * .XA.':KT3!!2l:ZE:I *;
n a r . T h S K L C Y A D 3 R - ?I::.c1s:dr')

Deb,;g, s s J n i l . - . 5 I n : t ~ 1 1 3 c r ? . e l = %:c\ n : a ~ f : 1 1 S e r n ~ I S p d c e
.xsse:t, :ni::a,a?:ne;space ' = 1)

i
k s r n e l L J c k r - l e r s s ,

/ *
* Add -.he kernel s p a c e I n i t i a l K s r n e l S p 3 c r to t h i s
* p r s c ~ s s o r r U n i 7 e r s e A l s o se t t h e h e a p S p r c 5 : n s t a n c e
f v a r i r b l - L D :he CPU s o ~ e c t
+/

3ebugI 'CoOnl rnc A d d i c q ' . n i t l a : k e r n e l kx t3 u n l v e r s e \ n ' .

As3erti : n : t ~ l l X e r n a l ; ~ i c ? ' = 3 I .
:,!e - > u r i v e r s e 1 - > adds F a c e
. ! r -) se tHeapspace I a i t i a l E o r n e l S p r c e ,

, ...
f B y t h e r r g e ave rybody Zefs h e r - t h e r r 1s d k a r - e l (h e a p) s p a c e
* a v a l l a b i e t o r l l o c a f e t h i n g s o u i 3i a n d added t o t h e pzoccssors
* U n i v e r s e A 1 1 i n i t i a l se t up s h o u l d a l s o b e z o m p l e t e d .

A 1 1 t h a t , l e f t do IS :o t a r n t h e z ~ r r e s t T r e a d ~ V C T t o t h e kernel
* by ca1 l :nq SernaLMain ' Who vi11 i n s t a l l a l l t h e e x c e p t i o n
* h a n d l e r s a n d do s t h e r i r e r n e i i n i t r l r r i r i o n t h i n g s , t h e n s t a r t

d L s p a t c h i n q t h r e a d s '....'.....*....*****...*.*.*........................,..~....,.,

i 3 : t i a l I . : n s L S ~ a c l .

I 2 : t L a 1 X r nb 1 < p I c D , ,

e x t e r n 701d K[crnc lMaln(u n s i g n e d I n t ,

Cebuq! "CoOnl ine C a l l i n g K e r n e i l l a i n \ n " ,
K e r n e l l l a i n , I D
asser t (:IOTBraCHED ;

ORIGINAL PAGE IS
OR POOR QUALITY

I
1
I

Owner
Name Except ion Hand1ers.c
Account 173
Site Dept. of Computer Science
Printer 24/300
SpoolDate Thu May 28 10:30:54 1987

russo at m.c s.u iuc.edu

JobHeader on
JamResistance On
Language printer
formwidth 132
formsperpage 2
outlines on

IMAGEN Printing System, Version 2.2, Serial # 8 6 : 2: 85
Page images processed: 3
Pages printed: 3

Paper size (width, height) :

Document length:
2560, 3328

77 59 bytes

a y 2 9 19.52 1387 Zxcept:onHandlars.c P i g e >

* Excepti3nHacdleis e ' , 'driairs ax;aptlsn hdndirnq iout~nes

$Bead+: BxceptionHandlers c . 7 1 1 . 1 1 3 7 ' 1) 5 / 2 7 3 5 1 5 . 1 1 r.lss0 E:cp 5
$Locker. 5

:/
Modification 9istory

Revision 11 11 37/05/17 0 5 : 3 5 : 1 3 russo
debug o f t

$Log: ExcaptionHandlerr c . v 5

* Revision 11 10 8 7 / 0 5 / 2 6 2 1 : 3 5 : 2 5 I U S S O

switched the switch Lo if.. .then elseif since the c o m p i l e r
seems to be total:y hosed

Revision 11 9 8 7 / 0 5 / 2 6 37:39:10]ohnrton
* DeDUgglng or..

* Rerlsisn 11 9 37'05/25 15:21.52 ;ohfis:~n
* nade ABTTrap 'xse PaxicP~intf insterd 3: ZPUPrintf

* ~ e v i s i o n 1 1 i B i / O J / 2 4 2 1 ~ 1 2 . 2 5 suss0
artsmpt to solve :hP case staiemenc v l e r d n e s s .

Bevision 11 1 a 7 / 0 J / 2 0 3 6 : 1 1 : 1 1 iusso
* trying to figure out whats happening with KILLTAREAD

Revision 11 2 8 7 / 0 5 / 2 4 0 5 : 0 9 : 5 1 ius50
* fixed calls to fixFault.

* R e v ~ s i o n 11.1 e 7 / (3 5 / 2 1 1 6 : 5 0 : 4 5 russo
* ;witshed w a y s of d e i e t e i n q threads

Revisron 11.9 8 7 / 0 5 / 2 1 15.54:JI russo
f Cansale input and private s t o r e s

* Revision i o 4.3 8 7 / 3 5 , , i i 1 4 . 0 4 . 4 3 rusdo
added terminating threads to the per-cpU delete queue

f Revision 10 3 7 8 1 / 9 5 / 1 6 1 1 . 4 5 : 3 8 russo
renamed f r s m ooot/Trapcatchers.c

* /

include "md-tuneabls. h"
Include "3ebug. h',
,include " A s s e r t h"
,include "'374 h"
,include "Fsultnandler h"
'include "SVCs h '
t include "space h"
I include "CPD. h"
linclude "?hread.h"
I include "? I s k . h
I include 'I Fr ame . h 'I
Iinclude 'Schedu1er.h"

ORIGMAC PAGE IS
OF POOR QUALITY

ay a s 1 O : o l 1987 EXceptionEandlers-c Page 2

Xtern 70id Balt:);

0 id
'apFrame1 struct F r m e frame 1

CPUPrintf('OumpFrame(%xj: PC=tx PSR=Sx M O D = % x Vector=4d\n". f r l m m ,

CPUPrintf(" r[O-7]= *x:tx:*= *x:hx:8x.%x rp=%r fp=%x\n",
frame->pc, frame->pjr, frame->mod. frame-)vcctorNumber J i

f r a m e -) r0, fr *me-> r 1, frame- > r l , frame- > s3, fr 4ma- > r4,
frame-)r5, frsme->rd, frame-)r7, frame->sp. frame->fp 1;

o id
BTTrap(struct Frame frame 1

/ -
Grab the mu rcqistcrs v e ' l l need.

* /
unsigned msr = R e a d M S 1 (j ;
unslgned eia = ReadEIA();

Pan:cPrintf("Abort TraQ: eia=*x msr=8x pc=rx psr=%x\n",

//DumpFramef frame 1;
/ / ((M S B *) cmsr)->printf();

/ *

/ I ifdef DEBUG

e i a , m s r , frare->pc, trame->psr 1 i

/fendif

Get the faulting address from the EIA
* /

unsigned addrmsr = ((LIA) eia).address(1 ;

/ *
Get t h e Space containing tbe faulting address

* wierd things w i l l happen if mapping of ' M e ' and the Universe
is n o t set up yet. Ue really shouldn't put ABTTrap 1 n the trap
table until vere ready.

* /
Space faultinqspace =

Debug("ABTTrap: faulting space = tx\n", faultingspace 1 :
Assert(frultingspace I= 0 j ;

': Eandlm the fault. (f i r s t , check for conditions V. don't understand. 1

Assesti ' ((M S B I msrI.BPTError0 I :
Assert('((Ksa) -SI) BPRO) ;
Assert(' ((M S B) msr) BPTReadError(1 1;
Assert(' ((M S B) msr) BPTStatError, I I;
Debug("ABTTrap: Mode of fault ts.\n".

xe->universe()-)spaceContaining((void * I address I :

*/

((EIA) c i a) .trPTI(1 'user" : "supervisor" 1 ;

/ *
The f i r s t thing we do 1s see if ve faulted on an address in a Space
that has grown If t h i s is vhat happened. then a l l ve have to do

* This 1s a11 d bit o f d hack u n t i l the ' i n t o :he keraei' ob;ec t calls work
* /

I

1ITdef DEBUG
Debug('SVC Trap\n" 1 :

DumpFrameI frame) ;

lendif

l int svc = frame->rO.

i f i svc == PBINTF-S'IC 1 I I

a y 28 10.12 1987 ErccptlonKand1ers.c Page 4

/ / should fault i f needed (w h a t 3. * l - ' I$ hack')
Touch1 * * (char * * l a p) ;
CPUPrintti . (c h a r * * l a p 1;

CPWPrlotf("KillTask SVC Called\n" , .
Halt(I I

I
eise i t (svc == KILLTASE-SVC I I

I
else if(svc == KILLTHREAD-SVC] 1 // termlnitr yJur ovn eseclltlon

CPUPrlntf('KillThread SVC Cdlled\n' j ,
Assert1 Me-)currentThreadl I * = 0 i i
Asserti Me->currentThread(i ' = Me-)idleThread() I ;
Assert(Me-~threddToDelete(I == 0 1 ,

': S e t the current processors Thread t 3 delete
* to the current Thread

The i d l e Thread cleans up and deletes t h e exiting
Thread. so switch t o it.

.I
extern 701d SwltchTo(Thread * 1

Mt-)setThre.dTaDeletel Me->cIIrrentThread(; 1 ,
C P U P r i n t C i 'KillThread s e t thread?oDelete\,n' 1 ,
SYltChTO, 0 1 , / / reilnqr;ish :he CPU
A s s e r t i XOTRLACHED I ;

t
else

CPIIPrintf('Invalid SVC ,%dl CalledLn' trame->rO)

Halt(I ,
1
frame-)pc++,
D e b u g ("SVC Set new pc t o \x\n', trrme-,pc 1 ,

8

1

~

I ~

I
I

* B e s u r e to call I n t c r r u p t a c k i o u l e d g e for s t r i p s i f 'we ever do a n y t h ~ n g b u t
* allti 1
'/

DNGINAL PAGE Ts
DE POOR QUALITY

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I

APPENDIX D

Cross-Architecture Procedure Call

Raymond Brook Essick

THE CROSS-ARCHITECTURE PROCEDURE CALL

BY

RAYMOND BROOKE ESSICK IV

B.S., University of Illinois, 1981
M.S., University of Illinois, 1983

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1987

Urbana, Illinois

t
JI
E
tr
1
1
L
1
c * Copyright by

Raymond Brooke Essick IV

1987

iii

ACKNOWLEDGEMENTS

Many friends helped me to complete this thesis. I would like to thank all of them for

their encouragement, support and friendship. Names that stand out among these friends

include Barb Cicone, Dirk Grunwald, Anda Harney, Rob Kolstad, Jim Purtilo, Malcolm Rai-

ley, John Shilling, and the members of the Systems Research Group. In particular, Rob

helped generate the insight that formed the basis for this thesis. Other friends that helped to

generate a pleasant working environment and answered the questions that I couldn't answer

include Jeff Donnelly, Kurt Horton, and Paul Richards.

I could not have completed this thesis without the support of my advisor, Professor Roy

H. Campbell. He provided invaluable intellectual and (invaluable!) financial support during

my research. My financial support came through NASA grant NSG-1471.' This grant funds

the EOS project, which is directed by Professor Roy Campbell. I would also like to thank the

members of my committee: Ralph Johnson, Duncan Lawrie, Jane Liu, and Dan Reed.

My wife, Jeanna, provided more support than I can ever acknowledge. She helped me

through the difficult spots and focused my attention on other things when I needed to step

back from my work for a while. Without her, the last 5 years would not have been nearly as

enjoyable.

iv

TABLE OF CONTENTS

CHAPTER

1 .

2 .

3 .

4 .

INTRODUCTION ..
1.1. CLASP Overview ..
1.2. Thesis Organization ..

RELATED WORK ...
2.1. Language-based Partitioning Mechanisms ...
2.2. Networked Filesystems ..
2.3. The Distributed System Model ..
2.4. The Client/Server Model ...
2.5. The Multiprocessor System Model ...
2.6. Summary of Related Work ..

CLASP AND THE CROSS ARCHITECTURE PROCEDURE CALL

3.2. The CLASP Address Space ..
3.3. CAPC Linkage ..
3.4. Compute Servers ...
3.5. Process State Manipulation ...
3.6. CAPC vs RPC ..

3.1. Required Homogeneity ..

IMPLEMENTATION OVERVIEW ..
4.1. The CLASP Loader ...
4.2. Operating System Kernel Modifications ...
4.3. The CLASP Daemon ...
4.4. CLASP Algorithms and Protocols ...

5 . PERFORMANCE OF THE IMPLEMENTATION ...
5.1. Theoretical Performance Expectations ..
5.2. Empirical Results ..
5.3. Comparing the Facts to the Theory ..

5.5. Determining Partitionings ...
5.4. Considerations For Partitioning Applications ..

6 . SUMMARY ..
6.1. Further Research ..
6.2. Future Performance Optimizations ...

1
4
7

8
9

22
27
31
35
41

43
45
48
53
57
60
63

67
67
70
78
79

85
86
90
95
96
99

102
102
106

I
E

I
T
I

6.3. Conclusions ...
APPENDIX A . ARGUMENTS AND RETURN VALUES ..

A.l. Motorola 68000 ..
A.2. Alliant FX Series ..
A.3. Convex C-1 ..
A.4. IBM RT ..

APPENDIX B . PERFORMANCE MEASUREmNTS ...
B.l. Double Precision LINPACK Benchmark ...
B.2. Compression Program ..

107

111
111
113
114
115

119
119
125

APPENDIX C . CODE SAMPLES .. 128
C.l. Procedures as Formal Parameters .. 128
C.2. Pointer Structures .. 130

APPENDIX D . CLASP CONFIGURATION AND LOG FILES 134

REFERENCES ... 138

VITA .. 144

1

CHAPTER 1.

INTRODUCTION

Workstations provide good interactive computing environments that have consistent

user response times and support many devices suitable for interactive work including bit

mapped displays, mice, and keyboards. Supercomputers supply large amounts of sequential

and vector computing power. However, they do not provide a cost effective interactive

environment. This thesis introduces the Cross-Architecture Procedure Call, a software archi-

tecture that allows applications to exploit both systems. Cross-Architecture Procedure Calls

(or CAPCs) combine virtual memory, high speed networking, and compatible data represen-

tations to accelerate an application's computations without modifying its code. CAPCs allow

workstation applications to use, on a demand basis, faster or more expensive processors as

compute servers so that each of an applications functions can be executed by the most

appropriate processor.

Workstations offer a number of advantages to a centralized timesharing system. A net-

work of workstations is more resistant to complete failure than a single system. (However,

the larger number of components increases the probability of partial failure.) Failure of a

single workstation usually does not prevent other workstations from functioning. Experimen-

tal software, frequent (or unexpected) reboots, and different operating systems are easier to

manage with a connected network of workstations. The incremental costs to enhance a net-

work of workstations are small.

Several costs offset these advantages. A system administrator must deal with many

System resources, which used to be workstations instead of a single, central machine.

2

centralized and easily managed, are now distributed across many systems. One resource lost

in the transition from a centralized system to a network of workstations is the sequential pro-

cessing power of the large timesharing CPU. Many tasks do not require the high CPU
,

bandwidth available in the centralized system. However, some tasks do require this

bandwidth; moving these tasks to workstations causes unacceptable increases in their execu-

tion time.

The most common way to reduce or eliminate this increase in execution time is to ship

the entire application to a supercomputer. This batch-oriented technique does not exploit

the interactive features of the workstation.

Another way to decrease execution time is to restructure sequential applications into

concurrent applications and then run them concurrently on many processors. Processor

configurations range from tightly coupled systems sharing common memory to loosely cou-

pled systems that communicate over networks such as Ethernet [64]. The tightly coupled

systems provide a centralized multiprocessor environment. They do not offer the same set of

interactive tools available on a workstation. Some systems automatically restructure sequen-

tial applications to execute concurrently on their many processors [11,42]. Other systems do

not restructure the application; the user must manually convert sequential applications to

concurrent applications.

Loosely-coupled systems can provide large amounts of processing power. At this time,

however, network communications times are dramatically slower than local memory refer-

ences. This communications overhead affects the choice of algorithms. Algorithms that gen-

erate less traffic between systems replace simple and fast algorithms that work well in

tightly-coupled systems (with low communications costs). These replacement algorithms

may increase the processing demands of the application while reducing the network traffic.

Remote Procedure Calls provide a mechanism to execute subroutines on remote

loosely-coupled processors [16,661. Applications can be partitioned so that CPU-intensive

routines execute on the supercomputer and other routines execute on the workstation. RPCs

have several restrictions that d e c t how an application is partitioned. RPC client and server

processes do not share the same address space. Thus, pointer-based structures do not

transfer well to a RPC environment and routines on different processors can not share the

same global variables. All communications between routines must be through the argument

list. RPC systems require stub routines and special compile-time operations to generate

instructions to transfer control between the client and server systems. These factors affect

how an application can be partitioned in an RPC environment.

Programs often spend large fractions of their execution time in small sections of their

code. This is often paraphrased as the 90-10 rule: programs spend 90% of their time in 10%

of the code. Sometimes, performance can be improved by selecting more appropriate or

efficient algorithms. In other cases, the algorithm in use is already optimal. In these cases,

the only way to make that section of code execute faster is to place i t on a faster processor.

Often, this 10% of the code is contained within several subroutines. Therefore, these subrou-

tines should be moved to a faster processor.

This thesis proposes a software architecture for executing programs in an environment

with workstations and supercomputers. Applications can exploit each processor’s particular

features. Interactive portions of an application can execute on the workstation. CPU-

intensive portions of an application can execute on the supercomputer. This architecture pro-

vides a standard process model - an application existing in a single address space. Our

4 -

architecture usually does not require any restructuring of applications programs.

Our new architecture partitions applications between workstations and supercomputers

while meeti.ng the following criteria. These criteria reflect our goals not to require restructur-

ing of applications and to exploit the features of both workstations and supercomputers.

The user need not restructure or recode his applications.

The programmer can specify an application’s partitioning. Changes to this par-
titioning do not require changes to the application source code.

Interactive tasks execute on the workstation. That is, the workstation is not
used as a simple terminal to submit jobs to the supercomputer.

CPU-intensive tasks execute on the supercomputer.

Optimization techniques, such as vector operation and parallel operations,
specific to certain architectures are still useful for code segments executed on
those architectures.

The compilers for each system need not be modified; a modified loader combines
the output from the respective compilers into an executable file.

The operating system resolves issues of control transfer and data transfer
between systems.

1.1. CLASP Overview

This thesis proposes the CLASP software architecture. CLASP, an acronym for Cross-

architecture Address Space, implements a new foundation for the traditional process model.

This new foundation allows heterogeneous CPUs to share the virtual address space of a pro-

cess. Tasks within the application execute on the CPU most appropriate to their needs -

interactive response, large amounts of CPU bandwidth, vector processing. CLASP identifies

a level of homogeneity necessary to implement this sharing. It also mitigates dissimilarities

between the processor architectures such as register sets and stack frame formats. CLASP

makes these differences transparent to the programmer.

5

CLASP allows heterogeneous CPUs with different performance characteristics and

potentially different instruction sets to operate in a single address space. This allows portions

of an application to be executed by the most appropriate processor. Where other research

efforts have augmented standard addressing schemes to provide remote uddresses, CLASP

makes a single address space accessible to multiple heterogeneous CPUs [78]. A novel aspect

of the CLASP architecture is the inclusion of instructions for different processor architectures

within the same address space. These instructions are placed in different regions of the

address space.

Our architecture introduces a new control transfer mechanism, the Cross Architecture

Procedure Cull (or CAPC). Like the Remote Procedure Call (or RPC), the Cross Architec-

ture Procedure Call transfers control between processors. RPCs introduce new calling

sequences into the application code to transfer control between processors. CAPCs do not

modify the subroutine calling sequence in the application code. In CAPCs, both local and

remote subroutine calls use the standard subroutine call and return instructions. The

CLASP kernel detects calls that refer to remote subroutines, packages arguments, and

transfers the control thread to the remote processor. When a subroutine is moved from the

local processor to the remote processor, the CAPC system does not require any changes to

the source or compiled instances of procedures that invoke the migrated subroutine.

Applications are prepared for this architecture by the new CLASP loader, which links

separately compiled routines into a single executable image. This loader recognizes the

different object formats for various processor architectures and resolves the cross-

architecture references. It provides the operating system kernel with the information neces-

sary to detect control transfers (e.g., procedure calls and returns) that cross architecture

6

boundaries. Routines that execute on specific architectures are compiled for those architec-

tures. Some frequently called routines (e.g., sqrt()) can be replicated. Duplicate copies of

these routines, each compiled for a different architecture, are loaded into the executable file.

Calls to any of these routines can be directed to the local instance of that routine, saving the

network overhead of a remote call. The loader chooses which instance to use when resolving

references to these routines.

Trees, lists, and other pointer-based data structures are difficult and sometimes imprac-

tical to implement in distributed computing models without a shared address space. The

SUN Remote Procedure Call dereferences pointers to pass individual elements of a pointer-

based structure (16,171. Pointer dereferencing is adequate for situations where single struc-

tures are passed by pointer instead of value. Others have advocated the use of subroutines to

encapsulate access to pointer-based structures [46,66]. This approach implies changing (or

deliberately designing) applications to encapsulate accesses to these structures. The CLASP

software architecture solves this problem by ensuring that the context for a pointer (Le., its

address space) can be transferred to the remote processor. Applications may use pointers as

handles to objects and for true pointer-based structures without concern about where a pro-

cedure is implemented.

CLASP uses demand paging to move arguments and data to the server. As an example,

binary searches through large sorted arrays can be efficient because the accessed portions of

the array are transferred to the remote processor on demand instead of prepaging the entire

array to the server. Pages, once transferred to the server, remain on the server until they are

required by the client processor. Pages used only by the client remain on the client; pages

used only by the server will be transferred to and remain on the server. Pages of data used

7

by both processors migrate between hosts on demand.

Although CLASP appears to be an approach to distributed computing, it is actually an

extension of the traditional single-processor model onto a new underlying implementation

that provides improved performance. CLASP mimics this single processor model but allows

the most appropriate CPU to execute appropriate parts of the problem. It does not require

restructuring of applications. Only portions that execute on a remote processor need to be

recompiled. The choice of which processor performs a specific routine affects only the pro-

cessing rate for that procedure. The choice does not alter the semantics for that procedure

nor its interactions with other procedures in the address space.

1.2. Thesis Organiration

Chapter 2 describes some of the work that motivated this thesis. Chapter 3 provides a

formal definition of the components of the CLASP system. Chapter 4 describes our protct

type CLASP system and the protocols i t uses to communicate between processors. Chapter 5

presents performance figures for our CLASP prototype. It also points out factors to consider

when partitioning an application to use CAPCs. The final chapter summarizes our results

and considers some additional research based on the CAPC concept.

8

CHAPTER 2.

RELATED WORK

This chapter presents a summary of other research directed towards sharing resources

and providing language level support for this sharing. Two primary areas are explored:

language features that provide access to other processors and system designs that support

shared resources. We do not discuss language constructs that support concurrent processes.

Although concurrency provides a foundation to reduce the execution time of an application, it

usually requires that programmers manually restructure source code to use different algo-

rithms. In this thesis, we direct our efforts towards making a single control thread execute

faster.

The first portion of this chapter concentrates on language mechanisms. The approaches

discussed in these sections represent different mechanisms for transferring a control thread

between processors.

The next portion of this chapter discusses network filesystems. Network filesystems

remove restrictions on where applications can execute by making the data required for those

applications available from almost any processor. This flexibility encourages a migration

towards workstations that provide effective work environments.

After the network filesystem discussion, this chapter presents several distributed sys-

tems. Two types of distributed systems are discussed. The first class extends the operating

system to include many component systems. The second class of distributed operating sys-

tem moves traditional operating system services, like filesystems, out of the kernel and into

-

application programs.

We discuss multiprocessor systems in the penultimate section of the chapter. Many of

these systems are suitable as the compute servers that we want to use for the compute-

intensive portions of our applications. Some of these systems use special compilers to convert

sequential applications to concurrent applications. This allows applications to use all of the

processors in these systems and reduce the computation time.

The chapter closes with a summary of these research efforts. We show how these sys-

tems do not meet all of the criteria presented in chapter 1.

2.1. Langusge-based Partitioning Mechanisms

In this section, we describe several language-based partitioning mechanisms. These

mechanisms allow applications to perform computations on remote processors. Each of these

techniques imposes some restrictions on the applications program. Some require applications

to be recoded in a new language. Others restrict the operations and data types that can be

used in remote operations.

The Remote Procedure Call uses the subroutine call abstraction as a logical point to

transfer control between processors. The Interface Compilers described improve the imple-

mentation of Remote Procedure Call systems.

Distributed Path Pascal provides access to remote objects within the Path Pascal

languages. Although the source code must be changed to use remote objects, the changes are

minor and do not affect the existing interface to an object. Object-oriented

support for remote operations. Eden, Smalltalk, and other object-oriented

systems provide

systems provide

10

....

support for objects that reside on other systems. However, these object-oriented systems and

Distributed Path Pascal require that an application be coded in the appropriate language to

use these features.

2.1.1. The Remote Procedure Call

Remote Procedure Calls - also called RPC - build on the control transfer intrinsic to

a procedure call and extend this control transfer across machine boundaries.' Nelson argues

that RPC is a satisfactory and efficient programming language primitive for constructing dis-

tributed systems [66]. The RPC model consists of a c l ien t process that invokes subroutines

implemented .by a server process. The client and server are separate processes and execute in

their own address space. Servers advertise a set of subroutines that clients can invoke.

Because the client and server do not share a common address space, RPC clients and

servers can only communicate through the parameter lists and return values of the subrou-

tines advertised by the server.' Client and server procedures can not pass information

through global variables because the two processors do not share an address space. In his

thesis, Nelson suggests that procedural interfaces be used for access to global variables

[46,66]. In a general RPC system, a server can call a routine on the client to retrieve a global

variable. By encapsulating access to global variables, programs can be partitioned (and

repartitioned) across clients and servers at later times with less chance of error in routines

An RPC call does not have to go to another machine. The RPC server can be located on the same CPU, but
within a different process.

* We discount the possibility that the client and server exchange information through a shared filesystem. This
approach suffers from the same limitations: the client and server must take explicit action to transfer informa-
tion between each other. Although filesystem communications might provide for more information to be passed
in a single transaction, it is not transparent.

11

that depend on access to global variables.

Some RPC implementations require special calling sequences to invoke routines on the

server [17,19]. Figures 2.1 and 2.2 depict the client and server code segments used to invoke

a remote procedure using the Sun RPC implementation.

RPC implementations often work across heterogeneous hardware. The client and pro-

cessor may have different instruction sets, processing speeds, and data representations. To

accommodate the different data representations, arguments and results of remote procedures

are coerced to a standard representation before being sent to the peer process. When

received, these values are again coerced, this time from the standard order to the order used

by the receiving processor [8,13]. This makes the RPC mechanism available across a diverse

combinations of processors. To implement an RPC system, a process must be able to coerce

data between its internal representation and the network standard representation.

The generality of a standard network representation introduces several costs to a

program’s execution. Systems must always convert data to the standard representation

before sending i t across the network; the recipient must always convert from the standard

representation to its internal repre~entation.~ If the client and server share a data representa-

tion that differs from the network standard order, RPC subroutines convert the data twice

when it could have been passed without change. A number of processors use the Network

Standard Order for their internal representation [4-7,47,48]. These machines can send data

across the network without any format conversions. However, RPC calls marshal1 their

parameters or results into a single buffer as part of the conversion procedure. Often, this

The recipient must perform this conversion. Intermediate sites, providing gateway functions, pass the data
without conversion.

12

/* * r e s u l t = foo(5, 7, * c D , "a s t r ing") ;
*/

struct foo - arglist
<

long argl;
long a r e ;
char arg3 ;
char *arg4;

3;

c a l l e r 0

long r e su l t ;
i n t f a i l ed ;
s t ruc t foo - a r g l i s t fooargs;

fooargs . argl = 5;
f ooargs . arg2 = 7;
fooargs.arg3 = ' c ' ;
f ooargs . arg4 = "a s t r ing" ;

f a i l e d = ca l l rpc (HOST, PROGRAM, VERSION, PROCEDURENUMBER,
xdr fooargs, &fooargs, xdr - long, $resu l t) ;

i f (failed)-
e x i t (1) ;

/*
* "resul t" contains re turn value from foo.
*/

3

xdr fooargs (xdrs , fp>
r eg r s t e r XDR *xdrs;
s t r u c t f ooargs *f p ;
<

re turn (xdr long (xdrs, &fp->argl) && xdr-long (xdrs, &fp->arg2) &&
x d r c h a r - (xdrs , &f p->arg3) && xdr - s t r i n g (xdrs , &f p->arg4) ;

3

Figure 2.1
Sample SUN RPC Client Code

13

f oohandler (rqstp , t ransp)
s t r u c t svc req *rqstp;
SVCXPRT * transp;
<

long value;
s t r u c t foo - a r g l l s t fooargs;

If (!svc - getargs (t ransp, xdr - fooargs, Btfooargs))
<

f p r l n t f (s t d e r r , "unable to decode arguments\n") ;
e x i t (1) ; .

.t
value = f oo (f ooargs . argi , f ooargs . arg2, f ooargs . arg3, f ooargs . a r g 4 ;
If (! svc sendreply (t ransp, xdr long, &value))
< - -

f p r l n t f (s t d e r r , "cant reply t o caller\nI1) ;
e x i t (1) ;

3
svc f reeargs (t ransp , xdr f ooargs , &f ooargs) ;
r e tu rn ;

- -
3

long foo (a rg l , arg2, arg3, arg4
long a r g l ;
long arg2;
char arg3 ;
char *arg4 ;

/* foo procedure Implemented here */
3

main 0
<

r eg l s t e r rpc (PROGRAM, VERSION, PROCEDURENUMBER,

svc run 0;
p r l i t f (' 'returned from svc run -- bad news\n");
e x i t (1) ;

foohandler, xdr fooargs, xdr long) ; - -

-
3

Figure 2.2
Sample SUN RPC Server Code

14

copy operation is performed even though no format conversion is done.

Different data types require different conversions between internal and network

representations. To provide the correct mappings, the RPC systems must provide type infor-

mation for procedure arguments. Constructs that abuse type information can fail in an RPC

environment. As an example, the C east operation allows programs to interpret the same bit

string several different ways.

The RPC client and server have separate address spaces. This separation provides an

easy way to replace the code of a remote procedure dynamically. New RPC client requests

can be sent to the new implementation of the server. RPC servers can be removed as their

clients finish execution.

Because RPC clients and server exist in separate address spaces, clients are not bound to

specific servers until runtime. Different instances of the client may interact with different

server programs. This can be used to reconfigure programs a t runtime with a minimum of

effort. In an RPC-based GKS implementation, the client process chooses a server appropri-

ate for the desired output device [76]. The X window package uses the deferred client/server

binding in the same manner [43-45].

Some RPC systems do not provide mechanisms for routines on the server to invoke

arbitrary functions on the server [2,3,16]. The relationship between the client and server is a

strict master/slave relationship.

15

2.1.2. Interface Compilers

The set of procedures, their arguments, and their results make up a protocol between

the RPC client and server.' To ensure that both the client and server obey the same protocol,

a number of interface compilers have been developed.

Interface compilers accept definitions of a procedure's arguments and results. They out-

put two code segments - one for the client and one for the server. The client code segment

is a set of routines that resembles a local instance of the subroutine. This client routine pack-

ages its arguments, transmits an RPC request to the server, retrieves the results and unpacks

them. The server code segment unpacks an RPC request and invokes the true subroutine,

which is implemented on the server.

Interface compilers reduce the complexity of managing RPC interfaces. Courier, rpcgen,

and related compilers take a specification of the input and output parameters for a procedure

and generate the necessary subroutines to package the arguments, transmit them to a server

processor, unpack the arguments, execute the routine on the server, and return the results to

the client processor.

Interface compilers do not change the semantics of the remote procedure call. They

simplify the specification, implementation, and management of the set of routines that an

RPC client can invoke on on an RPC server. In the next two sections, we discuss two inter-

face compilers: Xerox Courier and Sun RPCL. Both compilers allow specification of the

available procedures and the arguments and results for those procedures. Both compilers

generate the data conversion and packaging routines to translate between internal

' Protocols often are associated with message passing. See [59] for a discussion of how the Remote Procedure Call
and message passing are duals. Message passing can model RPC and RPC can model message passing.

16

representation and the network standard order. The Courier system also generates local stub

routines that can be called using local procedure call mechanisms. These stub routines per-

form the actual RPC call.

2.1.2.1. Xerox Courier

Xerox’s Courier language provides a way to specify procedure interfaces. The Courier

compiler translates the simple specification into the appropriate client and server stub rou-

tines. Courier-generated stub routines resolve data representation differences between hosts

by converting parameters and results to a standard order. Simple data types are converted

to a standard ordering for transmission across a network. Complex data types, such as

records, are decomposed until they are a collection of simple data types. The pieces of a com-

plex data type are reassembled on the remote host, using that host’s alignment and data

representation. If the Courier specification is correct, the resulting stub routines will be

correct.

Figure 2.3 contains a Courier specification for the subroutine foo. This concise

definition can be compared to the more complex notation in figures 2.1 and 2.2 for Sun RPC.

With Courier, a client invokes the local stub routine for foo. This stub routine packages the

arguments and sends them to the remote processor.

17

Foo: PROGRAM = BEGIN

-- Foo entry point

foo : PROCEDURE cargl : INTEGER, arg2 : INTEGER,
arg3 : CARDINAL, arg4 : ARRAY 32 OF CARDINAL 1
RETURNS C result : INTEGER I

= 0;

Figure 2.3
Sample Courier code

Xerox has developed other RPC stub compilers. The Lupine compiler generates RPC

stubs for the Cedar language. Versions of the Courier and Lupine compilers generate stubs

for languages like Mesa, Interlisp, C, Smalltalk, and others [26].

2.1.2.2. Sun RPCL

Sun has developed an interface compiler for their Remote Procedure Call Language,

RPCL [16,19]. RPCL uses a C-like syntax to specify the datatypes, procedures, and versions

of an RPC server. The RPCL compiler, rpcgen, produces header files for inclusion in applica-

tions code, generates the XDR routines for converting data to the external data representa-

tion, and produces a server program to register the program. RPCL permits one argument

for each remote procedure. RPCL does not build stub routines that allow users to invoke

remote routines with multiple arguments like:

foo (1, 2, 'd, "a string");

Instead, the argument must be collected into a single structure to be passed to the server.

18 1
Figure 2.4 shows the RPCL specification for the foo subroutine depicted in figures 2.1

through 2.3. RPCL automates the generation of the packaging and conversion routines and

structures (the structure foo - a r g l i s t and the routine zdrfooargs() in figure 2.1). It does

not remove the extra work in the culler() routine in figure 2.1.

The single argument restriction becomes important when the local or remote routines’

calling conventions are not under the control of the programmer configuring them for an

RPC environment. In such cases, the programmer can not change the procedure interface so

that i t accepts a single complex argument. Instead, he must manually generate an extra

layer of interface routines to convert between an expanded argument list and a single struc-

ture. The Courier RPC language provides these stubs; RPCL does not.

s t r u c t foo a r g l l s t
<

long a r g l ;
long arg2;
char arg3;
s t r i n g arg4 [I ;

3;

program RBEPROGRAM

version RBEVERSION
<
3 = 1 ;

long foohandler (foo - a r g l l s t) = 1;

3 = 100000;
Figure 2.4

Sample SUN RPCL Code

19

2.1.3. Network Data Segment

The network data segment, or NDS, is an extension of the remote procedure call that

allows the client and server to share access to global variables [56]. Like RPC, an NDS task

comprises two processes - one on the client system and one on the server system. NDS adds

a data segment that both client and server can access. This allows the client and server to

share access to global variables. These processes share a specific range of their address space.

Each processor can see changes made to data in this address range by the other processor.

The two processors do not share physical memory; instead, they use networking hardware -

like Ethernet - to transfer pages between themselves. The NDS software architecture is tar-

geted for languages like FORTRAN, where the client and server routines both access vari-

ables in COMMON.

The virtual memory subsystem and networking capabilities of the host systems provide

the means to share parts of the address space between the processors. The shared data

resides a t the same addresses in each process’ virtual memory address space. Figure 2.5

shows the address space layout for the NDS architecture. The NDS software keeps one copy

of each page in this range. These pages are demand paged between the processors as needed.

When the client accesses a page, the page migrates to the client’s physical memory. When

the server makes a reference to that page, it generates a page fault. The pagefault software

retrieves the non-resident page from the client processor instead of the local backing store.

Shared pages of the address space stay resident on the processor that last accessed them. In

long running programs, shared pages eventually will reside on the processor where they are

accessed. Pages accessed by both processors will move between the processors as needed.

20

The NDS software architecture supports languages like FORTRAN, where all variables

have static addresses. NDS does not work as well with stack based languages, such as C,

where many variables are stored on the stack. The NDS client and server processors each

have their own stack; neither processor can access data stored in the other processor’s stack.

Thus, the NDS architecture does not provide complete support for languages that store vari-

ables on the stack.

I-----

client
6 ,
I 1

1 hole server 1 text data

Figure 2.5
NDS Address Space Layout

stack
c--
growth

server I stack

growth

To execute an NDS program, the user must have two programs - an executable for the

client and an executable for the server. The code for each processor is stored in a separate

executable file. Special NDS compilers require information about routines are implemented

locally and remotely. For remote routines, the NDS compiler generates RPC stubs to invoke

the routine on the remote processor. Because the client and server programs are the result of

several different compiler runs, the compilers for both processors must guarantee the same

21

ordering, alignment, and length of operands. Client

tions with COMMON blocks in the same fashion.

2.1.4. Distributed Path Pascal

and server compilers must assign loca-

Distributed Path Pascal combines the parallelism features of a concurrent language with

access to remote resources [55]. Kolstad’s thesis describes an enhancement to Path Pascal

that provides remote objects. These remote objects may reside on other machines. Refer-

ences to entry procedures of a remote object are processed in an RPC fashion. Distributed

Path Pascal packages the arguments and sends a message to a server on the remote host.

The server then unpacks the arguments and invokes the object’s entry procedure. When the

procedure terminates, control returns to the calling process.

Distributed Path Pascal provides a language-level mechanism for access to remote

resources. It does, unfortunately, require changes to the source code to use the remote opera-

tions. These changes are restricted to a change in the declaration of the object.

Another shortcoming in the Distributed Path Pascal approach is that all operations on a

single object occur on the same processor. If an object encapsulates a large database, all

operations on the database occur on the same processor. Distributed Path Pascal does not

allow a fast lookup operation to be implemented on the workstation and an expensive re-

ordering of the database to be implemented on a compute server.

2.1.5. Object-Oriented Systems

Some object-oriented systems provide mechanisms to access objects on remote hosts.

Many of these systems uses messages as a communications mechanism between objects.

22

Messages to remote objects require extra processing at some level to move the message across

a communications link. Remote objects do not change the nature of the language.

These systems require different programming techniques. For example, large FOR-

TRAN codes do not port directly to these systems.

For example, the Eden system provides location-independent names for individual

objects in the system [23]. Each Eden object, or eject, has its own address space. Objects

can move between processors with the same architecture. An eject defining a matrix might

define functions to invert the matrix, lookup specific elements, and replace specific elements.

All of these operations are implemented on the same architecture.

2.2. Networked Filesystems

Network Filesystems direct their efforts towards sharing data among systems. While

these efforts are less ambitious than a complete distributed system, they provide a useful level

of sharing - particularly in UMX-like systems that rely on the filesystem for most commun-

ications between processes. Network Filesystems provide a framework that can be extended

to build a distributed system [34].

Network filesystems are useful because they allow users to work on arbitrary machines

- instead of being forced to work on the machine that holds their data. If a user can access

his supercomputer files from both the supercomputer and a workstation, he will often choose

the workstation for its superior work environment. With network filesystems (that allow

users to access supercomputer files from workstations) and the results of this thesis (which

allows users to access supercomputer cycles from workstations), users can exploit both sys-

tems easily.

23

There are many designs for, and implementations of, network filesystems. These

include: Xerox Alpine, SUN ND, SUN NFS, and IBM RVD [18,20,26,85]. Distributed sys-

tems l i e LOCUS and the Newcastle Connection provide network filesystems as part of their

larger goals.

2.2.1. Xerox Networked Filesystems

Researchers at Xerox PARC have developed several distributed filesystems. These

include Juniper, the Interim File Server, and the Alpine filesystem.

The Juniper filesystem, also known as the Xerox Distributed Filesystem, is an effort to

support access to shared databases in the Xerox environment - an environment where all

shared files are stored on file servers (651. Because the XDFS filesystem is targeted for shared

database systems, it had to provide support for common database operations. XDFS pro-

vides random access files and atomic transactions. Juniper was implemented on the Alto, a

16 bit workstation. After experimenting with this implementation, i t was discovered that the

performance was slow (but tolerable) and that the server frequently crashed. Server recovery

took over an hour. In addition, new software systems being developed at Xerox provided a

new basis for a more efficient and more robust file server [26,80]. This new filesystem is the

Alpine filesystem.

Another file server in use at Xerox is the IFSor Interim File Server. IF'S differs from a

true filesystem in that it moves the entire contents of a file to the local processor, allows i t to

be modified, and replaces the copy on the file server at the end of a session. Because IFS does

not support random access files, i t was not considered a candidate for extensions to support

database applications.

24

The Xerox Cedar environment uses the Alpine filesystem. Alpine’s primary purpose is

to store files that represent databases [26]. It also provides support for ordinary files contain-

ing documents and programs. Alpine uses lessons learned from the design and implementa-

tion of the Juniper filesystem. Alpine clients use Cedar’s RPC support mechanisms to com-

municate with an Alpine server. The directory mechanism, providing mappings from user

supplied filenames to the internal Alpine names, is not part of the Alpine filesystem. Instead,

this naming system is itself an Alpine client.

2.2.2. Apollo Domain

The Apollo Domain operating system, Aegis, is a networked operating system that pro-

vides transparent access to remote files and devices [9,10]. Files and devices are shared across

the nodes of a Domain system. Each file or device has a unique internal identifier that

describes its location in a network of Apollo systems. Directory services map external names

into one of these unique identifiers. Aegis’ demand-paging support determines the proper

location and arbitrates access to these resources.

2.2.3. Sun Remote Filesystems

Sun provides two (sometimes confused) disk-related network protocols. The first of

these, the ND protocol, provides block-level access to remote disks. It does not implement

remote filesystems. The more recent NF’S network filesystem uses a finer granularity to pro-

vide read/write sharing of the same filesystem by several clients.

I
I
8
1
8
I
I
1
I
P
I

I
I
8
1
8
t
8

e

25

2.2.3.1. The Sun ND Protocol

The ND (Network Disk) protocol provides diskless workstations with access to disks on

remote systems. The ND protocol provides a block level access to the raw device; the filesys-

tem is not part of this protocol. It provides the client with a device driver that maps disk

1/0 requests into network messages. ND servers interpret these messages as requests to read

and write specific sections of their local disks and transmit the results to the ND client. To

the ND client, an ND disk is similar to a local disk. This ND device has a different set of pro-

cedures to transfer data; instead of manipulating registers on a controller to start data

transfers, the device driver builds a network packet and sends it across an ethernet.

The ND server allocates sections of the local disk to individual ND clients. The lower

per-byte costs and better performance of large disk drives can be shared by several worksta-

tions. While the ND protocols allow several workstations to share the physical disk drive,

the data on the disk drive is not shared. Each client has exclusive read/write access to a por-

tion of the physical disk drive. Clients can share portions of the drive in read-only mode.

Diskless workstations can use the ND device driver model to boot from remote disks.

Some other network filesystems require local disks to boot individual processors. These disks

usually provide little storage space and relatively slow transfer rates.

2.2.3.2. T h e Sun NF'S Network Filesystem

The SUN Network File System extends the U N E Filesystem onto a network [15,85].

NFS servers export filesystems; NFS clients mount these filesystems. A server allows many

clients to access the same filesystem. Clients can perform read and write operations on the

26

filesystem; the NFS protocols keep the filesystem in a consistent state.

The NFS design uses stateless servers. State information, like file offsets and inode

information, is sent to the client after each operation. The client presents this information

for later transactions. This approach has several advantages. Because the client holds the

state information, servers can crash and reboot without disrupting service (although clients

are delayed until the server recovers). Thus, the NF'S protocols are robust across certain

failure modes. Because servers maintain no state information, they can handle arbitrary

numbers of clients - the server does not keep any per-client tables. Servers can handle

many clients with low traffic levels as well as a small number of clients generating high traffic

levels.

To guarantee that write operations have completed, NFS servers use synchronous 1/0

to the local disk. When writing to an NFS server, the client blocks until the transfer is com-

plete. This has a significant negative affect on performance. Some NFS implementations

allow asynchronous writes in their servers [86]. This change can more than double writing

throughput for applications that transfer large amounts of data. It also means that some

types of server failures leave files partially updated and provides no indication of this to the

client .

The NFS protocols do not provide file locking nor do they guarantee that each write is

atomic. File locking requires that the server maintain state information. Additional proto-

cols, in parallel with NFS, do provide file locking primitives on NF'S partitions [82].

Large write operations on a standard UNDC filesystem are a single, atomic operation.

Large writes may require

server. Because the server

several network transactions between the NFS client and NFS

does not maintain state, the single large write operation is broken

27

into several consecutive operations. It is possible for several clients to interleave their

requests in such a way that the final contents of the file are a combination of data from the

clients.

2.2.4. IBM Remote Vbtual Disks

The IBM Remote Virtual Disk protocol provides block-level access to remote disks.

This protocol provides functions similar to those provided by the Sun ND protocol. It has

some additional functions that manage protections on disk partitions [18].

2.3. The Distributed Syetem Model

Distributed Systems combine networks of machines into what gives the appearance of a

single system. They usually implement some form of network filesystem: files and devices

generally are available from any processor in the system. The same mechanisms provide

access to these resources from all processors, giving the system a measure of location indepen-

dence. Location independence implies implicit access to remote resources; users need not use

different constructs to access resources connected to a non-local processor. These systems are

characterized by the following features:

28

Files, devices, and (to a lesser extent) processors are accessible regardless of
their location.

Applications are bound to a processor a t execution startup. In some cases, an
application can be moved among similar processors.

A distributed system can survive the failure of one or more component systems.
When these components fail, portions of the system become inaccessible. Ac-
cess to the remaining portions of the system continues uninterrupted.

Distributed systems can be augmented with additional component systems.
This increases the total aggregate computing bandwidth of the system and al-
lows the system to support more simultaneous users.

The first system discussed, LOCUS, combines its many component processors to provide

the image of a single centralized system [72,84]. The components of a LOCUS system share

the same view of the resources in the system. A single name refers to the same LOCUS

resource regardless of which processor interprets the name.

The second system discussed, the Newcastle Connection, does not bind the individual

systems as tightly as LOCUS [27]. Instead, it provides mechanisms that allow the application

program to access resources on remote nodes without any syntax changes. Newcastle Con-

nection systems have separate views of the combined filesystem; when presented to different

machines, the same name can refer to different objects in the filesystem.

Both of these systems provide access to remote resources. Such systems allow applica-

tions to run on powerful processors while using resources connected to workstations. How-

ever, the entire application executes on the supercomputer. These systems provide a coarse

granularity of processor sharing that does not meet our criteria.

29

2.3.1. LOCUS

LOCUS integrates several (possibly heterogeneous) computers into a single system [72].

It extends the familiar environment of the U N M timesharing system into a multi-computer

environment. It provides an environment that simplifies the development of distributed

applications.

LOCUS extends the UNIX environment onto a network of computers. Processes share a

common filesystem, regardless of their assignment to CPUs. Processes communicate with the

same mechanisms used in a UNIX system. Distributed applications can be modeled as a set

of UNIX processes. The LOCUS operating system resolves issues of process location, network

communications, and filesystem operations.

LOCUS provides the same granularity of sharing as the UNM system - that of the

UNIX process. Processes are started on a single CPU; the system can move them to other

CPUs of the same architecture. LOCUS does not provide for the same process to execute on

multiple processor architectures.

2.3.2. The Newcastle Connection

The Newcastle Connection is a user-level implementation of UNIX United [27,37].

RUSSO’S thesis describes a kernel implementation of UNIX United [77]. UNTX United provides

a framework for connecting the filesystems of individual UNIX systems into a larger hierar-

chy. The roots of each UNIX system are directories in this extended tree.

These extensions allow applications programs to reference remote files and devices

without modification. To write to a remote tape drive, the user might use the pathname

30

/../unizb/deu/rmtO. The leading /../ indicates t o the pathname resolution code that the file

is in the root’s purent directory, then down into the unizb directory. The unizb directory is

actually the root directory of another UNM system named unixb. The U N M directory struc-

ture can be used to group the systems of various departments into appropriate groups. A

user in the Electrical Engineering Department at the University of Illinois might access the

password file on a machine in the CS department with the pathname /../../cs/a/etc/passwd.

To access the password file on a machine within the CS department at Purdue, he might use

/../../../pvrdue/cs/mordred/etc/passwd. This scheme provides an infinitely extensible nam-

ing tree above the local roots of each system. However, Newcastle Connection names are not

location independent. The user must have knowledge about the meta-structure of the tree

combining systems and knowledge about current node’s location in this meta-structure.

In addition to allowing access files and devices on remote systems, UNIX United pro-

vides for program execution on remote processors. This can allow for faster execution of pro-

grams by specifying that they run on faster or less loaded CPUs. The mechanism for specify-

ing the CPU to execute a program is tied to the system where that binary resides. If a binary

exists on system A, it executes on system A. The UNIX pipe construct can be used to build

series of connected programs and execute them in parallel on separate processors. The UNIX

text processing stream makes a good example of this feature:

tbl I eqn I pic I ditroff I d300

By specifying program images on separate hosts, the separate processes can be scheduled

on 5 different processors. This provides the potential for a five-fold throughput increase; the

actual improvement is somewhat less due to the communications costs between processors

31

and the synchronization that occurs at the original hosts [37,77].

Like LOCUS, the Newcastle Connection extends the scope of a UNM process. Processes

can now accesa remote resources. However, CPU sharing still occurs a t process granularity.

Individual processes can not execute on multiple CPU architectures.

2.4. The Client/Server Model

The client/server system is another form of distributed operating system. These sys-

tems use a different approach to provide services traditionally implemented by the operating

system kernel. Client/server systems demonstrate a trend toward reducing the size of the

operating system; the major function of these operating system kernels is to provide message

passing between processes. Server programs provide the services provided by the kernel of

more traditional operating systems. To the (new) kernel, these server programs are addi-

tional user applications which might be located on non-local nodes. Processes wishing to use

services such as filesystems are clients of these servers [22,30,41,74,75].

A result of this approach is that much of the operating system’s overhead can be moved

to another processor. In some cases, the operating system overhead can consume 50 percent

or more of the CPU cycles. When most of the operating system overhead is removed, appli-

cation programs can achieve higher sequential processing speeds on that CPU. Communica-

tions between the application and the traditional operating system services are now more

expensive: the new arrangement introduces communications costs between the application

and the operating system.

Client/server systems are often implemented in environments with many processors.

To exploit the parallelism available across these processors, an application program must be

32

partitioned manually into concurrent processes. Client/server systems concentrate on pro-

viding efficient communications mechanisms between processes and processors because the

system performance is so dependent on this underlying communications mechanism. Slow

communications mechanisms can reduce the system throughput dramatically.

The subsections below describe several systems based on the client/server model. Each

provides the programmer with the ability to partition application’s into separate pieces to

execute in parallel on separate processors. All of these systems can execute several instruc-

tion streams from the same logical address space. In many cases, the degree of concurrency is

limited to the number of processors sharing physical memory. This allows reduced solution

time for some appropriate algorithms in systems configured with multiple processors sharing

a single memory.

2.4.1. Amoeba

The Amoeba operating system is a client/server system being developed at the Vrije

University in Amsterdam [81]. The Amoeba system comprises four component types:

0 Workstations, one for each user,
0 Pools of processors, dynamically assigned to user tasks,
0 Specialized servers (e.g., file servers, bank servers), and
0 Gateways which link Amoeba systems at separate sites.

The Amoeba kernel provides message passing facilities and few other functions. This is

motivated by the desire to keep the kernel small, enhance its reliability, and provide the trad-

itional kernel features in user processes to facilitate flexibility for experimentation.

Amoeba assigns tasks to processors at process creation time. It is possible for several

processes to share the same text and data segments though the individual processes each have

I
1
8

33

private stack segments. Processes which share text and data share the same processor.

Because applications can dynamically acquire and release processors, the aggregate

bandwidth available to an application can be quite large. Applications must still be explicitly

partitioned properly to take advantage of this bandwidth.

2.4.2. Stanford V System

The V kernel project at Stanford University provides services in an environment of disk-

less workstations connected by a high-speed local network [30]. The V kernel provides a fast,

message-based communications framework for RPC among clients and servers. Teams of

one or more processes sharing a single address space provide processing power for a single

job.

V System message passing is synchronous. After sending a message, the sending process

blocks until the recipient replies. Since the V kernel guarantees delivery of messages, pro-

grammers need not implement protocols to ensure reliable communications between

processes. Within a team, starting a new process is relatively inexpensive. These inexpensive

processes provide a means to implement asynchronous communications; many programmers

create inexpensive processes only to send a message, wait for the acknowledgement, and then

terminate.

Each V process resides on a single logical host; all processes in a V team live on the

same logical host. A logical host resides on exactly one physical host though a physical host

may support many logical hosts.

34

Logical hosts can be moved between physical hosts, allowing a set of processes to be

moved from a busy processor to an idle processor; the busy processor suspends the processes

on the logical host, creates a logical host on the target processor, and sends the state of the

logical host to the remote host. The actual implementation allows the logical host to execute

while its state is being shipped to the new host. After the bulk of the state is transferred, the

V kernel checks to see what state has changed, and sends updated information for those parts

of the logical host [83].

Adding more processors to a V system can improve aggregate throughput. Decreasing

the solution time for a single application requires explicit restructuring of the application or

using faster processors. Cheriton has developed a master-slave approach to structuring

applications to execute on networks of personal workstations that do not share memory and

have limited communications bandwidth [29].

2.4.3. CMUMACH

The CMU MACH system provides a new foundation for future UNM development

[22,74]. MACH draws heavily on previous experience with Accent and uses a similar underly-

ing model [75]. MACH is designed to provide the facilities needed to exploit general-purpose,

shared-memory multiprocessors.

The MACH address space (ta sk) can have many active instruction streams (threads).

There can be many such tasks in a running MACH system. MACH’S multiple-thread model

provides a foundation for the easy use of parallel algorithms; shared-memory provides inex-

pensive data transfer between the threads of a task. On multiprocessors, MACH schedules

the threads concurrently and the application runs faster. On uni-processors, MACH

I
I
I
I
I.
I
I
I
I
1
I
I
8
1
I
1
I
1
I

35

schedules the threads sequentially. Although execution on a uni-processor takes longer, the

program produces the same results.

MACH provides programmers with constructs to partition a program into parallel

threads of computation that share a common data space. MACH also implements parallelism

without a shared data space; such a case is a simple RPC implementation using the MACH

message passing facilities between tasks.

MACH provides a good base for a CLASP implementation. The new virtual memory

management system allows non-kernel tasks to be specified as the paging mechanisms for

individual tasks [22]. This allows processes to page to user filesystems; MACH does not

require disk partitions to be dedicated to swapping [22]. The user level routines for CLASP

should be easily ported to the MACH environment. The page-management routines for

CLASP can be implemented using a non-kernel task that is assigned paging responsibilities

for a process.

2.5. The Multiprocessor System Model

Multiprocessor systems are another way to share resources. In these systems, a number

of processors are connected to a common memory. These processors can share peripherals.

An multiprocessor system with N CPUs can usually provide almost N times the performance

of a single processor system. Because the CPUs share the same set of peripherals, an N pro-

cessor system can cost much less than N times the cost of a single processor system.

Multiprocessor systems provide increased aggregate throughput. Because they share

memory, these systems can balance the load on each CPU without incurring high costs to

move jobs across a network between systems. With the appropriate compiler and operating

36

system support, these systems can reduce the execution time for applications.

8
I

The first set of systems described below uses many processors to improve aggregate

throughput. In these systems, the operating system allocates jobs to idle processors from a

single ready queue. Jobs may execute on different processors from one timeslice to the next.

Because moving jobs between processors does not incur any communications costs, a single

multiprocessor system with N processors provides better aggregate throughput than a net-

work of N uniprocessor systems (which have overhead when moving tasks between systems).

Idle processors can execute any ready job because all jobs are in a shared memory. By them-

selves, these systems do not reduce the solution time for a single application. However, appli-

cations can be restructured to exploit the concurrency available in these systems and reduce

their execution time.

The second set of multiprocessor systems uses compiler technology to detect implicit

concurrency in sequential code and constructs suitable for vector operations. Compilers for

these systems break sequential code into blocks that can be scheduled to execute concurrently

by the operating system. Data dependencies between blocks of code determine when blocks

can be scheduled. These dependencies are similar to Petri nets; when the input values are

ready, the block fires['ll]. These systems often use hardware technology similar to the first

set of multiprocessors. This hardware reduces memory contention and saturation of shared

resources through complex and expensive memory hierarchies. Some of these systems reduce

contention for the global memory by providing each processor with a private memory.

The multiprocessor systems described in this section comprise single logically and physi-

cally integrated systems; failure of critical elements in these systems stops all operations.

They are like centralized timesharing systems in this respect, although they might offer

I
I
B
I
1
I
D
I
I
I

I
B
I

I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
1

37

higher performance or easier expansion routes than a centralized, single-processor timeshar-

ing system. These systems also do not support the enhanced interfaces (e.g., mice, bit-

mapped displays) available on workstations. It currently is not cost effective to support these

interfaces on these machines for many users. Multiprocessor systems are more expensive

than single user workstations. While some multiprocessor machines can be expanded inex-

pensively to include more processors, there is still a significant initial cost.'

In addition to the systems we are about to describe, other multiprocessor systems

include the Cray-X/W, the CDC Cyber series, and the DECsystem 20. The DEC VAXclus-

ter is a closely-coupled system that allows multiple processors, with separate memory, to

share access to common peripheral devices. The VMS operating system uses this hardware to

provide load balancing and improved system reliability [S?].

The next sections describe several multiprocessor systems in more detail. The first sec-

tion describes the C.mmp project, an early experiment in multiprocessor systems. The

second section describes the Sequent and Encore systems, where the processors share a single

global memory. The third section describes the University of Illinois CEDAR project, which

combines multiprocessor systems with compilers that automatically restructure sequential

applications into concurrent applications.

' A 2 CPU, 2 Mbyte Sequent Balance-8000 system costs $59,000. A 4 CPU, 4 Mbyte Sequent Balance-21000 sys-
tem costs $139,900. The Balance-21000 has backplane slots for more processors than the Balance-8000. Addi-
tional processors are $16,000 per card (2 processors). An Alliant FX/8 with 1 CE costs $150,000. A fully expand-
ed FX/8 (with 8 CEs) costs $450,000. A SUN-3/52 workstation (with a local disk and cartridge tape drive) costs
$13,900. A diskless SUN-3/50 costs $4,995.

The Sequent prices are as of August 1986. The Alliant prices are from June 1985. The SUN prices are from fall
1986.

38

2.5.1. C.mmp

The C.mmp amd Cm* systems provided an early testbed for experiments involving mul-

tiple processors connected to a common memory hierarchy.

The C.mmp system connects 16 PDP-11 processors to a large common memory through

a crossbar switch [88-911. Address relocation boards in each processor map virtual addresses

on the private bus to physical addresses in the shared memory. Thus, each processor in the

C.mmp system could access the entire common system memory. Private, per-CPU memory

is used for off-line maintainence and certain private operations.

The Cm* machine contains clusters of processors. Like the C.mmp system, each proces-

sor has a private memory. However, Cm* has no single global shared memory. Instead, each

cluster of 5 machines is connected with a special Kmap processor that allows the CPUs to

access the memory connected to other CPUs. Kmap processors communicate between them-

selves to implement cross-cluster memory accesses. Each Cm* processor can access any of

the physical memory using a uniform method, but the access costs vary depending on the

relative locations of the processor and memory. Access times for memory in other clusters

can be as much as 10 times slower than access of the memory directly connected to the pro-

cessor [68,69].

2.5.2. Encore and Sequent

The Encore and Sequent systems represent a family of systems that use timeslice shar-

ing to allow a fine partitioning of the available computing cycles provided by many processors

to many processes. In timeslice sharing systems, a job may execute on a different processor

each timeslice. These systems use many processors attached to a common memory to

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
4
1
I
I
I
1
I
I
I
I
I
I
1

39
-

improve aggregate throughput. A processor can be reassigned to a different task each

timeslice. This technique allows a pair of 4 MIPS processors to provide service for two real-

time processes requiring 3 MIPS and a third process requiring 2 MIPS. A pair of 4 MIPS

singleprocessor systems can not meet the needs of the same 3 processes. Timeslice-sharing

systems do not reduce the solution time for a single application. The two processor system (4

MEPS each processor) does not meet the needs of an 8 MIPS program nor does i t meet the

needs of a 5 MIPS program.

Explicit restructuring of applications for concurrency allows timeslice sharing systems

to reduce the solution time for a given problem. The shared-memory between processors

improves the performance over that achieved when the same application is spread across a

network of processors. The communications costs between separate processes on these sys-

tems is much lower than the cost between processes on systems separated by a network.

The common memory provided in timeslice sharing systems can be used for an efficient

data sharing scheme. Some of these systems permit processes to share portions of the address

space [12,14]. Other systems, such as MACH, let processes share the entire address space. In

each of these cases, the application must still be restructured to reduce the solution time for

that application.

One of the advantages provided by these machines is tbeir ability to be expanded inex-

pensively. If more computational power is needed, additional processors can be purchased as

single boards. The additional boards plug into the system and give an immediate perfor-

mance improvement.

40

....

2.5.3. CEDAR

The CEDAR project at the University of Illinois is building large scale multiprocessor

supercomputers [42]. To attain this goal, the project is concentrating on connecting many

processors to a common memory hierarchy, using compilers that automatically restructure

sequential code into segments that can be executed in parallel, and developing a control

hierarchy to coordinate these many parallel tasks.

The CEDAR compilers isolate small blocks of code that can be scheduled independently

of each other [58]. The compiler decomposes loops without recurrence relations (and those

with specific types of recurrence relations) into several smaller loops that can be scheduled to

run on several processors concurrently.

The underlying hardware model for the CEDAR architecture is many processors sharing

a common hierarchical memory and each processor having a private memory. Code and data

required to execute a block are copied to the private memory. The output values are

returned to the common memory. Initial implementations of the CEDAR system are planned

for 8 and 16 processors. Larger systems, with 1024 or more processors, are being designed.

The CEDAR system reduces the solution time of a single application by partitioning the

application into blocks that are executed concurrently. The compiling and scheduling tech-

niques used in the CEDAR system are applicable to a range of memory hierarchies. Systems

with a common bus and a single global memory can show reduced execution time by using

compilers that automatically restructure the application. The CEDAR compilers show that

automatic restructuring techniques can be used to improve execution time for sequential

applications in a multiprocessor environment.

~

I
I
I
I
I
I
I
I
I
1
I
I
I
B
I
I
I
I
I

I
I
I
I
I
I
1
I
I
I
I
I
1
I
1
I
I
I
I

41

2.6. Summary of Related Work

We have examined a number of existing tools that provide support for resource sharing.

However, they do not meet the criteria defined in chapter 1.

The Remote Procedure Call allows applications to be partitioned between client and

server systems. RPC often requires changes to source code. All communications between the

RPC client and server must be through the defined procedural interfaces. Applications that

pass information using global variables or that use pointer-based structures can not be parti-

tioned transparently. RPC implements a restricted subset of the procedure call abstraction.

The NDS architecture removes some of the RPC restrictions by providing a shared data seg-

ment ahd allowing client and server routines to access shared global variables. NDS does not

support sharing of variables stored outside of the data segment (e.g., variables stored in the

stack). Both RPC and NDS store the client and server portions of a program in separate

files.

Object-oriented systems support remote operations. However, these systems require

that the application be coded using the appropriate languages. A large FORTRAN code

would have to be recoded in the appropriate new language to take advantage of these

features. This violates our rule that we will not require restructuring or recoding of applica-

tions.

The network filesystems presented in this chapter allow applications to run on any

machine. They are no longer restricted to executing on the system that stores the

application’s data. Because network filesystems only provide access to data on remote pro-

cessors, they do not solve the problem of partitioning an application so that it executes fas-

ter. Applications can be moved, in their entirety, to faster processors. But, this does not

42

satisfy our criteria that the workstation must be used for more than submitting jobs to a fast

processor.

Like network filesystems, distributed systems provide access to local and remote

resources. Applications can be moved to larger, faster processors in these systems and exe-

cute faster. These systems move entire programs to other processors. Like network filesys-

tems, they fail the criteria that the local workstation be used for more than submitting jobs

to a faster processor.

The final set of systems described, the multiprocessors, can provide improved perfor-

mance. They provide hardware support for compilers that analyze sequential programs to

generate concurrent programs. Because of their relatively high costs, these systems are more

appropriate for compute servers than as workstations or clients.

1
I
I
I
I
I
I

I
I
I
I
I

I

I
I
I

m

m

m

11
E
I

43

CHAPTER 3.

CLASP AND TEE CROSS ARCHITECTURE PROCEDURE CALL

The CLASP architecture is designed to provide compute servers for workstation users.

The compute servers are connected to the workstations using local area networks like Ether-

net. To meet our definition of effective, these compute servers must:

0

0

0

0

exploit the speed difference between client and server processors,

require no changes to application code,

continue to use the workstation for appropriate portions of the computation,

have no impact on the use of workstation-specific interfaces and devices such as
bit-mapped displays, mice, and windows.

The CLASP architecture implements the traditional UNIX process model on a new

underlying foundation. This new foundation allows appropriate sections of an application to

execute on the most appropriate processor. Like the Remote Procedure Call and NDS archi-

tectures, the CLASP architecture partitions applications at the procedure call level. CLASP

differs from these architectures by providing a more transparent mechanism to access remote

procedures. CLASP also removes some restrictions imposed by these other architectures.

Procedure calls that cross architectural boundaries are named Cross Architecture Procedure

Calls (or CAPCs) in the CLASP software architecture.

CLASP allows a set of routines within an application to be accelerated by recompiling

them for a faster processor. They will be executed on that processor. CLASP manages the

movement of data and the control thread between processors. CLASP seldom requires source

code changes to exploit the speed advantages of the compute server.

44

A new CLASP loader collects object files for multiple processor architectures into a sin-

gle executable file. The loader groups instructions for a particular processor architecture into

a contiguous virtual address range. The resulting executable file contains information that

describes the processor architectures required to execute different portions of the address

space.

A set of modifications to the operating system kernel handle the runtime details of the

CAPC software architecture. These modifications handle the detection of accesses to code for

non-local architectures, the transfer of control to a processor of the correct architecture, and

the transfer of pages in the address spaces between processors. These operations are tran-

sparent to the application program; the kernel implements all of these operations.

An application's performance is controlled by the way it is partitioned between the

client and server. Some partitionings yield better performance than others. It is not efficient

to use.CAF'Cs to calculate a square root; the network overhead overwhelms any speed advan-

tages provided by the remote processor. An application is partitioned by compiling specific

source files for specific architectures.

This chapter describes the characteristics that the workstation and compute server must

share. It describes the virtual address space of a CLASP process. One section describes how

CAPC control transfers are detected and processed. Another section describes process state

manipulations, including changes in the virtual address space and paging between systems.

The chapter closes with a comparison of CAPCs and RPCs.

45
-

3.1. Required Homogeneity

The CLASP architecture requires that processors share data representations and have a

common address space. However, each processor may have different instruction sets, register

sets, and stack frame formats.

3.1.1. Homogeneous Data Representation

CLASP requires that all participating processors agree on how data is represented. For-

tunately, many processors share a common data representation. For example, the Motorola

68000 and IBM RT-PC microprocessors have the same data representation as the Convex

C-1 and Alliant FX computers [1,4,7,11,47,48]. Because they share the same internal data

representation, these processors can exchange information without intermediate format

conversions. The processors can move data as a series of bytes without interpreting the con-

tents and without providing type information.

When compiled and executed on different processors with the same data represenation, a

subroutine generates the same output. We are not concerned with the actual machine

instructions that implement the subroutine, but rather with the relative processing rates of

the two processors. One processor may execute the subroutine signficantly faster than the

other. For example, a CPU with vector instructions might execute a matrix multiplication

subroutine significantly faster than a CPU without vector instructions. Each processor exe-

cutes a different sequence of instructions at different rates, but the generated output is the

same in both cases.

48

-

3.1.2. Homogeneous Address Space

Many languages provide pointer data types in addition to character, integer, and float-

ing point data types. A CLASP system must provide a homogeneous data representation for

pointer data types. T o provide support for pointer types in a CLASP system, the processors

must share a common virtual address space. The common virtual address space allows the

client and server processors to share pointer data types. Therefore, CLASP implementations

for languages that provide pointer data types require that client and server processors have

an intersecting virtual address space. An exact address space match is not necessary; a

CLASP system can function with a sufficiently large intersection.

Some application languages, like FORTRAN, do not provide pointer data types. For

these languages, a common virtual address space is not necessary. Instead, a direct mapping

between the two address spaces is sufficient. Modifications to the loader to handle the skew

in the address space allows these languages to be split between client and server processors.

The loader adjusts operand offsets to accommodate the different locations in the virtual

address space.

3.1.3. Homogeneous Compilers

Identical data representations and intersecting address spaces provide a base for the

CLASP software architecture. To use this system, the compilers for both architectures must

share several properties. In particular, variable types (e.g., int, long, float, etc.) must

translate to the same length, alignment of variables within structure or record definitions

must be the same, the compilers must use similar argument passing techniques, return values

must also be compatible. Many UNM implementations include C compilers based on the

I
1
8
4
8
1
cp
d
f

I

0

47

portable C compiler and share many of these properties [52).

High-level programming languages provide several basic data types (e.g., id , float,

short, long, etc.) and mechanisms for constructing more complex data structures (e.g., the

PASCAL record or the C struct). Both compilers must map simple data types to the same

sizes. A compiler that translates int into 2 bytes of storage is incompatible with a compiler

that maps int into 4 bytes of storage. For more complex data types (e.g., record or strucf),

the compilers must obey the same alignment restrictions. Some compilers align to even byte

boundaries to meet processor restrictions. Other compilers align to 4 byte boundaries to

match memory subsystems. A CLASP system requires that the compilers use the same align-

ment rules.

The CLASP routines must be able to pass a subroutine's argument vector to the remote

processor. In many cases, argument vectors are stored as a contiguous array of bytes. The

first parameter is stored at the low address of the byte array and the last parameter is stored

at the high end of the array. Other compilers place the first few arguments in registers and

store the remaining arguments as an array of bytes [67]. For these cases, CLASP kernel rou-

tines collects the register arguments and the additional arguments into a single vector to pass

to the remote processor.

The CLASP routines must also be able to collect the return values. Many compilers

place return values in one or two registers. On the Motorola 68000, return values of 32 bits

or fewer are passed in the register DO. 64 bit return values are passed in DO and D1.

Routines that return complex data types are handled in several ways.lSome compilers

This difference prevents us from using the IBM RT with its current compilers as a client of processors such as
the SUN, Convex, or Alliant.

, 48

return a pointer to an instance of the complex data type [52]. This instance is in a static

per-routine buffer. The calling routine copies the instance to its desired location. Other

compilers use a different approach [49,67]. The calling routine prepends an extra argument

to the parameter list. At call time, this parameter contains a pointer to an instance of the

complex data type. The called routine stores its results in the supplied buffer.

CLASP can use compilers that implement either technique, but both compilers must

implement the same mechanism. Compilers that change the argument list according to the

return value of the routine can not be easily matched with compilers that do not.

3.2. The CLASP Address Space

CLASP provides each application with a single address space. The client and server

portions of an application share this address space. Individual pages of the address space

reside in the physical memory of one processor or another. When a processor requires a page

that resides in the remote processor’s physical memory, the data is demand-paged across the

network and placed in the local physical memory. The page tables on both processors are

modified to reflect the page’s new location.

The address space contains the instructions for both processor architectures. For each

architecture, the CLASP loader consolidates the instructions into a single range of addresses

in the address space. A CLASP executable file contains a table describing the instruction

space for each architecture. The loader generates this information when it builds the execut-

able image. The CLASP kernel uses this instruction space information and the virtual

memory protection hardware to detect CAPC calls and returns.

5
s
t
I
c
E
c
I

li
E

I
6
I
B
8

49

The CLASP address space is similar to the U N M address space. However, the single

text segment of a UNM process is replaced with a number of text subsegments. Each text

subsegment corresponds to a processor architecture. The instruction space table in the exe-

cutable file describes the boundaries and architectures of these text subsegments. Figure 3.1

shows the layout of the multiple text segments, the data segment, and the stack segment for

the normal U N M process and a CLASP process.

I
I

g x h I
I

Figure 3.1
CLASP Address Space Layout

The U N M stack segment contains the activation records for called procedures. Each of

these activation records is in the format of the local processor. The CLASP stack segment

contains activation records for both processor architectures. CLASP inserts its own informa-

tion between adjacent activations records for different processor architectures. This informa-

tion allows CLASP to handle control transfers between architectures. This is described in

more detail in section 3.2.2, The Clasp Stack Segment, and section 3.3.2, Stack Frame Mani-

pulation.

50

3.2.1. The CLASP Text Segment

The text segment contains the executable code for the client and server architectures.

The loader combines the instructions for a particular architecture into a tezt subsegment.

The CLASP loader aligns the text subsegments on virtual memory page boundaries. This

lets the CLASP kernel use the virtual memory protection mechanism to prevent a processor

from fetching instructions from another architecture's text subsegment. Some virtual

memory systems provide an execute protection bit. Other virtual memory systems combine

read and execute permission into a single protection bit. In the former, a processor may be

allowed to read the instruction space for remote architectures. Systems with a single protec-

tion for read and execution permissions make it impractical to provide read permission for

the pages that are non-executable.

Each processor maintains its own page tables for residency and protection information

about the address space. The protection information is used to detect and process subroutine

calls that cross CPU boundaries. The client sets its page table entries for the server architec-

ture instruction space to disallow execution.2 Attempts to execute instructions from those

pages on the client CPU generate traps to the operating system kernel. The server allows

execution of the instructions appropriate to its architecture, but protects the pages with

client architecture instructions to prevent execution of client instructions on the server pro-

cessor.

' Some virtual memory systems provide read, write and execute protection bits for each page. For these systems,
CLASP clears the execute permission bit. Other V M systems combine read and execute permissions into a single
bit. To disallow execution in these systems, CLASP must also disallow read permission on those pages.

I
I

51

3.2.2. The CLASP Stack Segment

Like the UNIX stack segment, the CLASP segment contains subroutine activation

records. The CLASP kernel transparently extends the stack segment to hold new subroutine

activation records or stack frames. The CLASP system stores activation records for both

processor architectures on the same stack. When a CAPC causes the control thread to move

between processors, the CLASP kernel arranges for the remote processor to have the correct

stack frame for its activation record. The kernel builds a CAPC packet to describe the

transformation between the processor architectures and stores this information on the stack.

This CAPC frame contains the argument vector location and length, the called

procedure’s entry point, the return address for the calling procedure, and the stack bounds.

CAPC calls and returns use this frame to exchange information. The remote processor may

replicate some portions of the procedure call information if needed. For example, the VAX

hardware architecture provides an argument pointer register that can be loaded with the

location of the original arguments. The Motorola 68000 family does not provide an argument

register, instead i t expects the arguments to be just above the stack pointer a t procedure

entry. A 68000-based CLASP system copies the argument vector to set up the correct stack

layout for a procedure call. Some hardware architectures require the CLASP kernel to repli-

cate the procedure call information. The original copy is stored in the client’s format while

the second copy follows the server’s stack protocol.

The local processor’s general registers are not kept in the CAPC frame. There are

several reasons not to store the registers. The remote processor uses its own registers, it will

not overwrite any registers on the local processor. The register layout may differ between

processors; the remote processor might have more registers or they may have different names

I 52

client stack frame 1

client procedure call information I-> 2

client stack frame 2 .
client procedure call information 2->3

and semantics. The 68000 uses register A7 as a stack pointer; the IBM RT uses register R1

\
\
\
\
\

\ \
\
\

) ,
/

, /

as its stack pointer.

Figure 3.2 depicts the stack segment as i t looks while executing a routine on the remote

processor. Procedures 1 and 2 execute on the client; procedures 3 and 4 execute on the

server.

A processor c a n examine variables stored in the stack segment by the peer processor.

The variables have the same internal representation; the remote processor requires only the

address of the variable to access, and modify, the variable.

Figure 3.2
CLASP Stack Layout During a CAPC

HOST 1

HOST 2

3
5
a
%.
8
1
E
I
R
3
a
1

t
1

m

I.

1
L
II

53

In a single architecture model, programs are able to destroy their activation records.

Because the CLASP kernel stores the CAPC frame in the user’s stack segment, these faulty

programs also can destroy the CAPC frame.

3.3. CAPC Linkage

This section of the thesis ,scribes how the CLASP kernel processes CAPC calls and

returns. To process a CAPC call, the kernel must detect the reference to a non-local pro-

cedure, identify the argument vector’s location and length, determine the return address, and

determine the stack boundaries. After gathering this information, the kernel builds a CAFC

frame on the user stack and transfer control to the server. The CLASP kernel on the server

uses the CAPC information to build a calling frame in the server architecture’s format and to

start execution of the remote procedure.

This section also describes the mechanisms used to implement nested CAPC calls. The

CLASP system allows server routines to invoke routines on the client.

3.3.1. Detecting Calls to Procedures for Other Architectures

The CLASP kernel uses the virtual memory protection system to detect CAPC calls and

returns. The CLASP loader generates a map describing the architecture for each of the text

subsegments. The kernel uses this to protect the instructions for non-local architectures.

When an application makes a procedure call to an address in one of these protected regions,

the virtual memory system generates a fault and traps to the kernel. The kernel examines

the faulting instruction to determine whether i t is a call or return. The target address for the

call or return is the address that generated the fault.

54

For a CAPC call, the kernel also determines the location and length of the argument

vector. This is an architecture-dependent operation. The kernel places this information in a

CAPC frame and stores it on the stack. CAPC frames contain:

0

0

0

0

0

a location to start execution,

the location of the arguments to the subroutine,

the count of arguments to the subroutine,.

the stack pointer, indicating where the server can build a procedure call frame,

information from the server used to restore the stack frame upon completion of
the CAPC, and

the arguments, if their total size is less than 64 bytes. 0

The kernel sends the address of the CAPC frame and a copy of the CAPC frame to the

remote processor. The kernel on the remote processor uses the CAF'C frame to build an

activation record for the called procedure. After building the activation record, the kernel

starts the called procedure at its entry point.

When the remote procedure finishes, it returns to the address stored in its activation

record. This address is in the text segment for the client processor. The virtual memory sys-

tem generates a protection fault when the processor attempts to fetch the instruction at the

return address. The kernel determines that a return instruction caused the fault. The server

loads the return values into fields in the CAPC frame. After loading the return values, the

server passes the CAF'C frame to the client processor. The client processor retrieves the

return values from the CAF'C frame, loads them into the appropriate registers for the client

architecture, removes the CAPC frame from the stack, and resumes execution of the applica-

tion code.

58

I I \

The stack frame after several nested CAPCs might look like the frame depicted in figure

3.3. This stack frame is for a process with procedures P1 through P5. Each procedure calls

the next higher numbered procedure. The client processor executes procedures P l , P2, and

P5. Procedures P3 and P4 execute on the server architecture.

I I \

Many programming languages provide a mechanism to pass functions as formal parame-

ters to other routines. The UNIX qsorf(3) routine uses this mechanism to allow users to

I I /

P1 locals I-'\
Pl->P2 args I '\\

P2 locals

P2->P3 args

'> HOST1

I

I (replicated) P2->P3 args I
.

P3 locals
P3->P4 args * > HOST2 .

P4 locals I .
0

0
0

0

I P5 locals I /--

Figure 3.3
Stack Layout During Nested Cross-Architecture Calls

57

specify a function that returns the ordering of two elements. CLASP allows applications to

pass both client and server procedures as formal parameters. The procedure’s architecture

does not change how the procedure is passed. When the routine is invoked from the called

routine, there are no special instructions that differentiate between local and remote pro-

cedures. Appendix C contains an example program that demonstrates this feature of the

CLASP architecture.

3.4. Compute Servers

When starting a CLASP process, the operating system starts any server processes that

might be required by the client. The CLASP kernel starts these processes during the UNM

ezec(2) system call. If the kernel can not instantiate a server, the ezec(2) call is aborted.

These failures are mapped onto an existing failure condition for the ezec() call. Failed server

instantiations are reported to the caller as ENOMEM errors, a message that indicates the

system was unable to allocate swap space for the new executable file.

For some processes, a program may never invoke the routines implemented on the

server. In these cases, the server startup cost has been wasted. However, delayed server

instantiation introduces new failure modes into an application program. If the kernel delays

the instantiation of the server until the application attempts to execute code for that archi-

tecture, applications must be prepared for a potential error on any procedure call. By estab-

lishing servers at process creation time, we do not incroduce any extra failure modes. The

execution time saved by delaying server instantiation does not justify the programming costs

to accommodate the new failure modes.

58

3.4.1. Selecting A Server

The CLASP kernel selects the processor that acts as a server for CAPC applications.

Different instances of an application can use different server processors. Many clients can

select the same server processor.

Our CLASP implementation stores a list of <architecture,oddress> pairs to describe

available servers.' After determining the required server architecture for a CLASP process,

the kernel searches this table for an entry with the correct architecture.' At this time, the

kernel attempts to connect to the CLASP server daemon listening a t the specified address. If

the local kernel does not receive an answer, the ezec(2) call is aborted. If the local kernel

establishes a connection with the server process, it sends a message describing the address

space: the text subsegments, their architectures, and their address ranges. The local kernel

then allows the application program to begin execution.

3.4.2. Distributed Virtual Address Space

RPC systems package and ship entire parameter lists to the server on each call. For

large argument lists (e.g., an array of simultaneous linear equations), this operation incurs a

significant cost. Later operations (e.g., solving a linear system for a particular right hand

side) require the factored array to be re-transmitted. Thus, an RPC system to solve the

linear system Ax = b might:

' Note that the local processor can be the server. This aids testing, but does not improve performance.

are stored with the header information in the executable file.
The architecture information - which architectures are required and their address ranges in the text segment -

59

Transmit the A matrix to the server, where it is factored,

Return the factored A matrix to the client, and

Transmit the factored A matrix and a b matrix to the server, to obtain a solu-
tion.

The CLASP architecture uses demand paging to reduce paging traffic between the client

and server systems. The CLASP kernel sends pages to the remote processor only when the

remote processor attempts to access that page. Pages accessed exclusively by one processor

stay on that processor. Thus, global variables accessed by a server routine will be demand

paged to the server when it is accessed, instead of being prepackaged and transmitted as

part of the procedure call.'

After a call to the compute server, a set of pages resides on the server. These pages

remain on the server; the server does not send the pages back to the client until the client

requests them. This approach follows Denning's guidelines for working sets: [31]

The fundamental strategy advocated here - a compromise against a lot of expensive
memory - is to minimise page trafic.

Our implementation provides for a single copy of each page in the virtual address space.

For read/write pages, this approach works well. For read-only pages, this approach is

inefficient when both processors access those pages.

More recent work at Yale has implemented mechanisms for maintaining memory

coherency in a loosely-coupled multiprocessor system [61]. Li's thesis provides mechanisms

for replicating pages accessed in read-only mode. When pages are written, the system invali-

-

' By dereferencing pointers and including the underlying objct, RPC systems sometimes generate less network
traffic than CAPC systems. For further information on this, see section 3.8 CAPCs us RPCs.

60

dates the extra copies of that page. He outlines several protocols to ensure that only one pro-

cessor has write permission on any page and describes how the rights for a page can be passed

between processors. Li’s research used loosely coupled homogeneous processors to run con-

current algorithms using a network of workstations. However, the results can be used to

reduce network paging traffic in the CLASP system.

3.5. Process State Manipulation

This section of the thesis describes how CLASP affects a process’s state. A process’s

state includes its address space, the extent of its address space, its file descriptors, and other

information stored in the kernel. Address space information includes the boundaries of the

text, data, and stack segments. It also includes the contents of those segments.

3.5.1. Address Space Bounds

The CLASP client and server processes share the same virtual address space. To ensure

a consistent view of this address space, the CLASP kernel must arbitrate access to pages and

the bounds of the address space. Section 3.4.2 explains the CLASP page management

scheme. This section describes how the CLASP kernel manages changes in the address space
\

bounds.

The stack segment grows dynamically to hold extra procedure call/return information.

The break(2) U M X system call extends, or reduces, the size of the data segment. The client

and server processors must inform each other about changes in the boundaries of the address

space. Each CLASP process must be able to access the same portions of the virtual address

space, regardless of which processor executes the instructions.

61

Changes in the address space bounds are passed to server processors when the control

thread is transferred to that machine. The server does not need this information until the

control thread moves to the sewer? The client processor includes the current address space

bounds with the CAPC call packet. When the control thread moves to the server, the server

adjusts its page maps and address space boundaries to match the boundaries presented in the

client's call message.

When the virtual address space expands, the server adds new page table entries for the

new pages. The server marks these pages resident on the client processor. If the server

attempts to access these new pages, they will be demand paged from the client processor.

Decreasing the address space requires additional work to ensure that the client and

server views of the address space remain consistent. If the client shrinks and re-expands the

data segment, it replaces those pages with zero fill-on-demand pages. This operation dis-

cards any data on the affected pages. If the server has copies of those pages, it must also dis-

card those pages. When shrinking the address space, the client must notify the server of the

invalidated pages of the address space.

The CLASP kernel saves a low water marker for the bounds of the address space.

Address space reductions set this low water marker. The client kernel passes the current

bounds and the low water bounds when it passes control to the server. The server kernel

examines the low water marker to see if the client discarded any pages that the server knows

about. If so, the server invalidates those pages. After resolving address space reductions, the

' This is a design decision based on our underlying process model. Our base system (SUN Unix) provides a single
control thread in each address space. In a system with multiple control threads, a different scheme to modify the
address space is required. A possible scheme might designate one or more of the processors as owner of pages not
yet in the address space. Extensions of the address space would be processed through this processor in a manner
similar to the current network page fault mechanism.

62

server uses the current address space information in the CAPC to expand its page table to

the current size. The new pages are marked resident on the client.

3.5.2. System Calla

The UNIX system call uses state information stored in the kernel. Some system calls

reference simple information, such as the current time. Others reference more complex state

information, such as 1/0 descriptors. The CLASP architecture does not attempt to replicate

this state information between the client and server kernels. The client and server share only

information about the bounds of the user’s address space.

Applications must make system calls on the processor holding the appropriate state

information. Because the client processor holds all state information, system calls occur on

the client processor. User programs access UNIX system calls through a collection of C sub-

routines that package their arguments and trap to the UNIX kernel. An easy way to force

system calls to a particular architecture is to compile these subroutines for that architecture.

The current CLASP implementation uses this scheme to force system calls back to the client

processor. Client calls to these subroutines execute on the client processor. Server calls to

these subroutines generate CAPC calls from the server to the client processor, where the sys-

tem call is executed.

CLASP does not disallow system calls on the server processor. In many cases, i t can be

more efficient to perform system calls on the server. For example, assume an application

that uses a file stored on the servers disks. In the current implementation, 1/0 operations on

this file are processed on the client. If a routine on the server reads from the file, the data

crosses the network twice: once using the network filesystem operations from the server to

63

. .
the client and once from the client to the server as a CLASP network page fault. A modified

version of the 1/0 related library routines can eliminate this overhead. These library rou-

tines can direct the 1/0 operation to the appropriate kernel. Other systems have successfully

used this technique to redirect system calls to the appropriate processor [27,37,77].

3.6. CAPCvs RPC

The CLASP architecture improves on the RPC architecture in several respects. The

best way to summarise these improvements is to note that CAPCs provide the same seman-

tics as normal procedure calls, while RPCs provide a subset of the normal procedure inter-

face.

RPC client and server processes execute in separate address spaces. All data required

for a remote procedure call must be passed as arguments to that routine and can not contain

pointers. On the other hand, CLASP client and server processes execute in the same virtual

address space. This allows routines to exchange data through global variables and to share

pointer-based structures such as lists and trees. Thus, CLASP procedures can be used

exactly like normal procedures. Converting a program to RPC usually involves rewriting it.

There are situations where this shared address space can impact performance. When a

CLASP server routine dereferences a pointer passed from the client, it may generate a net-

work page fault to retrieve the appropriate page of the virtual address space. RPC systems

dereference each pointer before packaging and transmitting the argument list. Therefore, the

single RPC message contains the object described by the pointer and does not generate the

extra network transaction possible in the CLASP system. Imagine the pathological case

where all of a routine’s arguments are pointers, scattered through the address space. An

04

RPC system collects all the data and sends a single large message. A CLASP system might

generate a network page fault for each argument.

On the other hand, many common algorithms will be much faster in a CLASP-based

system than using RPC. CLASP’S demand-paging approach moves only the arguments and

data that are actually used between systems. As an example, binary searches through large

sorted arrays can be efficient because the accessed portions of the array are transferred to the

remote processor on demand instead of prepaging the entire array to the server. Pages, once

transferred to the server, remain on the server until they are required by the client processor.

Pages used only by the client remain on the client; pages used only by the server will be

transferred to and remain on the server. Pages of data used by both processors migrate

between hosts on demand. Demand-paging allows CLASP to support arbitrarily long argu-

ment vectors. RPC systems, because they package all of the arguments into a single mes-

sage, limit arguments to the maximum length of a network message.

Another improvement that CLASP makes over RPC systems is the way remote pro-

cedures are invoked. RPC systems use special calling sequences to access remote procedures.

Some RPC implementations replicate this calling sequence at every place that invokes the

remote routine [161. Other implementations encapsulate these calling sequences into a local

stub routine [3]. CLASP uses neither special calling sequences nor stub routines. Instead, the

client uses the subroutine call instruction of the local architecture with the target address of

the desired routine, regardless of whether i t is local or remote. Similarly, the server uses the

subroutine call instruction of its architecture with the target address of the desired routine.

The CLASP kernel uses the virtual memory system to detect the transfer to routines that

execute on the server. The special instructions used to transfer control in RPC systems are

05

1
1
IE
1
3
t
1

replaced by functions in the CLASP kernel.

Because RPC systems use special calling sequences to invoke routines on remote proces-

sors, they do not provide transparent means to pass local and remote procedures as formal

parameters to subroutines. CLASP allows applications to pass both local and remote func-

tions as arguments to subroutines. The called subroutine does not require any special pro-

cessing to handle both local and remote functions; it uses the same instruction sequence to

invoke both function types.

RPC systems have several advantages over CLASP. Because the RPC client and server

execute in separate address spaces, one half can be changed without affecting the other.

Thus, new RPC servers can be installed without changes to existing RPC clients.' Program

changes in a CLASP-based system require that the program be relinked to incorporate the

new code.

RPC servers can be more secure than a CLASP program. Because the RPC server exe-

cutes in its own address space, all interaction is through the RPC call interface; clients can

not modify or destroy data stored in the RPC server. CLASP programs, because they exe-

cute in a single address space, do not have this separation.

RPC systems operate between systems with different internal data representations.

Because all information passed between systems is contained in the paramters and results of

subroutine calls, appropriate typing and conversion operations can be applied when the data

is transferred between systems. CAPCs, because they transfer data between systems as pages

' Some RPC implementations might require that no client of that RPC server be active when the new version is
installed. Others allow active clients to continue with the old server while new clients are connected to the new
server.

68

of uninterpreted data, only operate between systems that share internal data representations.

Cross-Architecture Procedure Calls do a better job of emulating the normal procedure

call than the Remote Procedure Call. Because CAPCs provide transparent access to routines

on remote processors, they do not require changes to application code. RPCs usually require

changes to application code. By eliminating the need to change application code, the CAPC

eliminates extra programming costs.

67

CHAPTER 4.

IMPLEMENTATION OVERVLEW

This section of the thesis describes a prototype CLASP system. This implementation is

based on Release 3.0 of the SUN UNM Operating System [21]. The implementation uses

SUN-3 workstations with Motorola 68020 processors. In the next sections, we describe the

three components of our prototype: the CLASP loader, the CLASP daemon, and the operat-

ing system kernel modifications. The CLASP loader assembles object files for several proces-

sor architectures into a single executable file. The CLASP daemon cooperates with the

modified kernel to instantiate server processes and record CLASP statistics. The kernel

modifications detect and perform C M C calls and returns; they also manage page residency

for each CLASP process’s virtual address space.

4.1. The CLASP Loader

Our new loader is a modified version of the standard UNM loader. The standard U N E

loader processes object files for a single architecture to generate an executable file. The new

loader processes object files for several processor architectures to generate a multi-

architecture executable file. This multi-architecture executable file differs from a single-

architecture executable because i t has several text segments. Standard U N M executable files

have a single text segment. Each of the CLASP text segments contains instructions for a

different processor architecture.

68

The multi-architecture executable file is similar to a standard UNJX executable file.

The text segment of the multi-architecture file is divided into several text subsegments; each

of these subsegments contains instructions for a different processor architecture. The file

header of a multi-architecture executable file contains extra information describing how the

text segment is partitioned - which sections of the address space correspond to a particular

processor architecture.

4.1.1. Text Partitioning

As the loader processes each object file, it determines the processor architecture from

header information stored in that file. The loader places instructions for the each architec-

ture in a contiguous segment of virtual memory. Segments begin on page boundaries; no sin-

gle page cont&ns information for more than one segment'. This allows the CLASP kernel to

detect non-local instruction references using the hardware supported page-level protections.

The loader provides the kernel with a table that describes the multiple text subseg-

ments. This table specifies the architecture for each subsegment, and its location and extant

in the address space. Figure 4.1 illustrates the C structure clasphdr that defines this infor-

mation. This structure is stored at the beginning of the executable file, just after the UNlX

a.out header information.

4.1.2. Replicated Code

Short routines - like s q t t () - are executed most effectively on the local processor. The

network overhead to make a remote call and return makes i t much more expensive to execute

69

~

#define MAXCLASPSEGS 4

struct claspseg

unsigned short cs arch;
unsigned long csrelocatlon;
unsigned long c s f irst ;
unsigned long cs-last - ;

>;

/*

/*
/*
/*
/*

struct clasphdr
<

long c nsegs; /*
struct claspseg c - segment WCLASPSEGS] ;

>;

Figure 4.1
Clasp Header Structure

m a x # architectures */

architecture */
address shifts */
addr in 1st page */
addr in last page */

number of segments */

such routines on the remote processor. The network overhead overwhelms any speedup

gained by executing on the remote processor. If the routine is called infrequently, this over-

head is not a significant fraction of the total running time. However if the routine is called

for each element of a large array, the network overhead is unacceptable. In some cases, both

client and server make many calls to the same subroutine.

These cases appear to require substantial overhead - it seems that one of the proces-

sors must use remote operations to invoke the shared subroutine. A modified CLASP loader

can eliminate this overhead by allowing multiple instances of the same function.' Each

instance of the function executes on a different architecture. If both implementations are

compiled from the same source, their execution will generate the same outputs. This follows

At some point, the programmer still must decide which routines should be replicated. The loader does not
make this decision.

70

from the properties discussed in Section 3.2.

The loader symbol table allows multiple instances of symbols that reference addresses in

the text segment. When the relocation information uses a text symbol, the loader attempts

to use an instance of the label defined for the current architecture. If no instance of the rou-

tine exists for the local architecture, the loader uses the instance for the remote architecture.

The loader’s attempts to use local instances of replicated routines can fail when pro-

cedures are passed as formal arguments to routines. The UNIX qsort(3) routine expects an

array of elements, the size of the array, and a pointer to a comparison routine. Qsort invokes

the comparison routine to determine if the array elements are in order. The call to qsort will

be resolved with a local instance of the comparison routine (assuming it is replicated on both

processors). If qsort executes on the remote processor, each call to the comparison routine

will cause a CAPC call back to the client processor. At this time, we have no general solu-

tion to this problem.

4.2. Operating System Kernel Modifications

This section describes how the CLASP kernel recognizes multi-architecture executable

files, performs CAPC calls and returns, and transfers pages of the virtual address space

between client and server systems.

Although the described implementation is based on the SUN Unix 3.0 kernel, many

details should be portable to other variations of the UNM system, including the AT&T Sys-

tem V standard [21,54).

71

4.2.1. Recogniring CLASP Executable Files

The UNM: kernel determines the type of an executable file from the a.out header. This

header describes the architecture appropriate for the executable image. It also contains a

magic number that describes how the image should be loaded into the virtual address space.

Some magic numbers (e.g., OMAGIC) specify a process that runs with an impure text seg-

ment; these processes can overwrite their instruction space. The ZMAGIC magic number

specifies a process that is demand-paged from the executable file and shares its (read-only)

text segment with other processes executing the same image. Our prototype defines a new

magic number - CMAGIC - that specifies a demand-paged multi-architecture executable

file. The CLASP loader uses the CMAGIC value in the a.out headers for executable images

that it generates.

I
il
1

The kernel loads executable images as part of the ezec(2) system call. Our new kernel

includes the CMAGIC value in the list of allowed magic numbers.

I
I
I
I
II
I

As part of the ezec(2) call, the kernel builds a new address space from the executable

image, replaces the existing address space, and starts the user process at a specified entry

point. For CMAGIC files, the kernel instantiates a server process before beginning execution

of the user process.

4.2.2. Per-Process Structures

The U N M kernel maintains a u and proc structure for each process in the system.2

* These structures define the user and process information for each active process in a UNM system. Additional
information on these structures can be found in the literature [62].

72

-
These structures contain file descriptors, scheduling information, address space boundaries,

and other state data for that process. CLASP processes require additional kernel informa-

tion: the connection to the server processor, text subsegment boundaries, and other informa-

tion. The u structure for each process now contains an extra field pointing to a claspData

structure for that process. This structure is allocated from the kernel’s buffer pool dynami-

cally when a CMAGIC process starts. When the process terminates, the space is returned to

the buffer pool. The space requirements for non-CLASP processes are not i n c r e ~ e d . ~ Figure

4.2 shows the C definition of the claspData structure.

Our prototype also stores a copy of the clasphdr structure from the executable file in

the u structure. It should be stored in the claspData structure.

4.2.3. Virtual Memory

Our prototype required two modifications to the virtual memory system. The first

modification allows the CLASP kernel routines to protect instructions for non-local architec-

tures so they can not be executed on the local processor. The second set of modifications pro-

vides the paging functions to share the virtual address space between the client and server

processes.

The u structure is an integral number of pages. The claspData pointer uses space that is already allocated to
that structure but is otherwise unused.

73

s truct claspData
<

struct wire t cd wire; /* f o r network 1/0 */
s truct claspNe twork cd cn ;
struct claspNetwork c d c n 2 - ; /* 2-message ops */
i n t cd havedata; /* cd-cn is f u l l */
l n t cd-amsegment [MAXCLASPSEGS] ; /* segs 1 do */
long c d t e x t b a s e ; /* where they start */
long c d d a t a b a s e ;
s i z e - t cd - da taad jus t ;

/* the message */

/* used on server */

long cd didshrink;
s i z e t cd :shrink;
s ize-t c d d s h r i n k ;
s iz e-t cd-s s h r Ink ;
long- c i - f l a g s ;

#def l n e CD READY
#def i n e CD-HAV-EW1RE
#def i n e CD-CONNECTED -

/*
* instrumentation. ...
*/

long ’ cdgageou t s ;
long c d g a g e l n s ;
long c d g a g e s i z e ;
long cd l o c a l c a l l s ;
long cd-localrets ;
long cd-netcalls ;
long c d n e t r e t s ; -

3;

Ox1
0x2
0x4

/* i f b r k 0 shrunk */
/* should never shr ink */
/* smal les t ds ize */
/* smal les t s s i z e */
/* s t a t e flags */
/* i n use */
/* go t one */
/* and connected */

/* pages s e n t */
/* pages yanked */
/* across wire */
/* I handle */
/* t o peer */

Figure 4.2
Dynamically Allocated structure for each CLASP process

4.2.3.1. Page Protections

The UNIX kernel already provides internal functions that protect individual pages of

the address space. Existing kernel routines use this function to protect the text segment

74

against.write access. A new function uses the single-page protection routine to protect a

series of pages. The new function expects an address range and a protection and invokes the

single-page function on each page in the specified range. When starting a CLASP process,

the kernel uses this routine to protect the sections of the text segment that contain instruc-

tions for the non-local architecture.

4.2.3.2. Network Page Faults

The second set of modifications to the UNIX kernel implement address space sharing

between the client and server processors. During program execution, the pages of the virtual

address space move between the client and server processor. When a page is resident on the

server processor, the client processor can not access that page. Attempts to access the page

generate a memory fault and the kernel must retrieve the page from the server processor. In

this respect, the kernel must handle server-resident pages in the same fashion as pages stored

on the swap device. The mechanism used to retrieve server-resident pages differs from that

used to retrieve pages stored on the swap device.

When a page is non-resident, the corresponding page table entry (PTE) contains infor-

mation describing its location on the swap device. Some pages, which have never been

resident, are not stored on the swap device. Instead, the first access to these pages causes the

kernel to allocate a page filled with zeroes. These pages are called fill-on-demand pages.

There are several kinds of fill-on-demand pages: fill with zero, fill from an arbitrary file, and

fill from the executable image. The system pagein routine alIocates and validates a physical

page before invoking a fill-on-demand handler. The handler proceeds by loading the page

with the appropriate contents.

I
I
1
1
u
I
a
I
I

1
I
1
1

J
i
1
8

m

75

Server-resident pages are marked as a new type of fill-on-demand page. These pages

are marked CLASP fill-on-demand. The pagefault handler's table of fill-on-demand

handlers contains a new entry for the CLASP fill-on-demand page type. When processing a

CLASP fill-on-demand fault, the pagein routine calls the new claspgagein() routine with the

virtual address of the page and the length of that page.

The claspgagein() routine issues a request to the server for the appropriate section of

the address space. Claspgagein() uses the communications descriptor stored in the clasp-

Data structure to communicate with the server process. The server process replies with a

message describing the page and the contents of the page.' The client.stores the retrieved

page at the appropriate virtual address, marks the PTE as valid, and returns control to the

system pagein handler. After sending a page to the client, the server invalidates its copy of

the page: it frees the physical page frame and marks the appropriate PTE as CLASP fill-

on-demand.

When a page is retrieved from the server, the client marks the page modified, or dirty.

This happens even though the client has not modified the page. Otherwise, the local pageout

daemon might discard the copy of the page on the assumption that has not been modified

since i t was last written to the swap device. This is more straightforward than determining

whether the remote processor modified the page. It does not require extra information in the

PTE to store an extra modified since retrieved from remote bit. The cost for this decision is

that a page may occasionally be written to the backing store twice. However, the extra disk

transfer occurrs asycnchronously, i t only affects the pages that aren't modified again by the

' While the control thread is on the client, the server process sits in the clu.tp-rco() routine. For network paging
operations, clasp_tctr() invokes the proper CLASP paging routines. When a control transfer message arrives, the
clospJco() routine returns to i t s caller - the claspfault() routine.

70

local processor, and should only occur for pages that fall out of the working set.

4.2.4. Cross-Architecture Calla

Applications make CAPC calls using the subroutine call mechanism of the local archi-

tecture. For CAPCs, the target address is a section of the virtual address space protected

against execution. When the processor attempts to fetch the first instruction of the called

subroutine, the virtual memory hardware generates a protection violation signal. At this

time, the kernel f rap() routine is called to handle the fault.

The trap routine calls the new claspjaulfo routine to handle protection violations.

Claspfaulfo determines whether the fault was caused by a CAPC call, a CAPC return, or is

a stray memory reference. For stray memory references, clasp j a u l f o returns an indication to

the trap() routine to generate a segmentation violation signal for the user process.

Claspfaulfo decodes the instruction that generated the fault to determine whether it is a

CAPC call or return. For CAF'C calls and returns, the claspfaulfo routine packages the call

information and transfers control to the remote processor.

For CAPC calls, claspfaulfo determines the argument vector, the target address and

the return address. The target address - the address of the called subroutine - is the

address that caused the MMU to generate the fault. Machine-specific code examines the

stack and also examines the intructions following the call instruction to determine the length

and location of the argument vector. Claspfault() stores this information in a clasppacket

structure and sends it to the remote processor using the network descriptor stored in the

claspData structure.

77
-

Claspfaulfo uses the claspzrnifo routine to send the control transfer message to the

remote processor. After sending the message, claspfault() calls the cZasp-rcv() routine to

receive the message that returns control to the local processor. The thread can come back as

a nested CAPC call. It can also return to the client as a CAPC return. Claspyew() relinqu-

ishes control of the CPU while awaiting messages. The process sleeps waiting for data to

arrive on the network file des~riptor .~

While awaiting the control transfer message, the server process is in the claspfault()

routine.6 When the message arrives, clnspfaulfo unpacks the message, builds a call frame on

the (server) processor, and sets the appropriate values for the program counter, stack pointer,

and other registers. For some cases, an argument register can be loaded with an appropriate

value pointing to the arguments. In other cases, clmpfaulfo must make a copy of the argu-

ment vector. After building the call frame, claspfaulfo returns through the kernel trap

handler with an indication that the user process should be resumed with the new register

values. At this time, the user program continues execution on the server processor.

4.2.5. Cross-Architecture Returns

On CAF'C returns, claspfaulfo takes the return values from the appropriate registers

and stores them in the fields of the clasppacket passed from the client a t call time.

Clasp-faulfo then sends this packet back to the client processor. After sending the packet,

' The kernel sleep0 routine causes the current process to await a specific event. The current process relinquishes
control of the CPU and waits for the event. When the event occurs, another process will make a call to the ker-
nel lookcup() routine, which will move the sleeping process into the ready queue.

' I t is really in the closp_rcrr() routine while waiting for the message. However, as soon as the message arrives,
closp_rcV() returns to clospfoulfo. CJasp_rcIJO also handles the server side of network paging requests. Client re-
quests for pages in memory are directed to the elosp~ageoufo routine from within closp_rca().

78
..-.

claspfault() waits for memory and control transfer requests.

Upon receiving the clasppacket, the client unpacks the return values and loads the

appropriate registers for the client architecture. Claspfault() sets up the appropriate register

values for returns in the same fashion i t sets up registers for calls.

4.3. The CLASP Daemon

The CLASP daemon, claspd, listens on a TCP/P socket for connections from client

processes.' When it receives a connection, claspd forks a child process to act as server for that

client. After spawning the server process, claspd awaits further service requests. The client

and its server process communicate independently from the CLASP daemon. The child pro-

cess uses a new CLASP-specific system call to become a server. This system call accepts the

file descriptor of the network connection to the client as a parameter.

The claspd() system call allocates a claspData structure for the current process. The

descriptor for the network connection is stored in this structure. Claspd then collects infor-

mation across the network from the client process. This information includes the text seg-

ment partitioning and a copy of the text segment. The CLASP kernel code returns to user

mode after arranging for an immediate protection trap and setting a flag for claspfault().

The system trap handler calls claspfault() when the user code generates the protection

violation. Claspfault() examines the flag set by the claspd() system call to see that this is a

server initialization fault. Instead of sending a message to the client process, claspfault()

waits for a control transfer message from the client.

' TCP/IP is a stream-oriented protocol that provides in-order, guaranteed delivery communications between two
endpoints [73].

79

4.4. CLASP Algorithms and Protocols

The next several sections describe the protocols for choosing a compute server, establish-

ing contact with a compute server, transferring control between servers (the client is also a

server), and transferring memory between servers. The different structures for control and

memory transfer are part of a single network structure. The examples in this chapter include

only the relevant sections of the network structure.

4.4.1. Server Availability and Selection

A new kernel table is used to select a server processor. New system calls allow claspd to

clear, replace entries, and append entries to this table. At startup time, claspd reads the file

/usr/local/etc/claspd. config for profiling, logging, and server address information. Appendix

D describes the syntax of the claspd.config file and includes an example configuration file.

After determining an address for the server, the CLASP kernel routines try to establish

a connection to that address. If the connection fails, the client process is aborted.

4.4.2. Initiating a Dialogue with a Compute Server

CLASP clients establish connections to the required server processors when the client

process is instantiated. In our implementation, the operating system establishes these con-

nections as part of the ezec(2) system call. Once a server process has been started, the client

process initializes the server by sending a description of the address space. This description

includes the address space bounds and the text subsegment locations, sizes, and architectures.

After this information is transmitted, the client process sends a copy of the text segment

80

across the network to the server.'

Our prototype does not try to connect to alternate servers if the first server does not

respond. Our implementation does not provide a protocol for a server to deny service on a

selective basis.

4.4.3. Calling Procedures on a Compute Server

Claspfault() determines the target address for remote calls, the location and length of

the argument vector, the return address, and the stack bounds. This information is stored in

a clasppacket structure. Figure 4.4 shows the C declaration for this structure.

CZaspfauZt() stores a copy of the clasppacket structure on the user stack. It builds a

message to the server that contains the address of the clasppacket on the stack and a copy

struct initiate - data
<

struct clasphdr cnx claspHdr; /* from a.out */
long /* client is */
long cnx-callee-segments CMAXCLASPSEGS + 11 ; /* server is */
long cnxtextbase ; /* segment bases
long cnx-database - ;

cnx caller segments CMAXUSPSEGS + 11 ;

3;

Figure 4.3
Data Transferred to Start A Server
[part of the claspNetwork structure]

' Pushing a copy of the entire text segment across the network can be expensive. Some processes have as much as
a megabyte of instruction space. A future implementation might pass file handles (like the NFS mode) so the
server can demand page portions of the address space from the file on the client processor [IS].

1
8
B
I
a
s
I
I
1

*/

81

s truct claspPacke t
<

long cp - action;
/*
* values used In a call
*/
caddr t cp subroutine;
caddrt cp-sp ;
caddrt - cp-arglis t ;
long cp-arglen - ;
/*
* values used In a return
*/
caddr t cp return;
caddrt cp-usp ;
unsigned long cp rO;
unsigned long cprl; -
/*
* server end of a call uses this for
*/
struct clasppacket *cp - lastp;

>;

/* call, return, etc */

/* address to call */
/* where server can start */
/* base of arg vector */
/* length of arg vector */

/* return address */
/* user SP after return */
/* return 0 */
/* return i */

temp storage

/* for nested cross-calls */

Figure 4.4
CAPC Information Packet

of the clasppacket. The controlxfer structure, depicted in figure 4.5, is part of the

larger claspNe twork structure. Other fields in the claspNetwork structure contain the

current address space boundaries; these fields are loaded before the message is sent to the

remote processor.

4.4.4. Returning from Procedures on a Compute Server

For returns, claspfaulfo uses the existing clasppacket from the CAPC call. The

cpAction field is changed from call to return, and the return value fields are loaded with

82

/* *
* the extent of the address space.

The claspNetwork combined structure contains fields describing

*/

struct controlxfer {
long cnx ctlxfertype;
s truc t ciaspPacke t *cnx cpp ;
struct clasppacket cnx - fastcapc ;

3 ;

/* call or return */
/* pointer to CAPC frame */
/* copy of CApC frame */

Figure 4.5
CAPC Control Transfer Information

values from the appropriate processor registers.

ClcrspfauZt() then follows the same steps to send this clasppacket back to the client as

i t would to send a call message to the client: address space bounds are loaded into the

claspNetwork structure and the message is written on the network descriptor in the

claspData structure.

4.4.5. Memory Transfers Between Clients and Servers

The CLASP prototype memory system uses a simple model to maintain coherency in

the virtual address space: each page of the address space resides on exactly one host. If one

CPU needs a page that resides on another host, the page is demand-paged from the remote

processor to the local processor. The local processor - the one that wants the page - is the

client. The non-local processor that currently holds the page is the server. A processor acts

as both client and server at various times through the lifetime of an application process.

83

When the CPU attempts to access a page that is not resident in main memory, the

MMU generates a page fault. Non-resident pages can be retrieved from several different loca-

tions. Some pages are retrieved from the local backing store (e.g., the swap space of the local

processor). Other pages reside on remote processors and must be retrieved across the net-

work. In both cases, the page table entry describes where the page is stored and how to

retrieve the page.

The client CLASP kernel marks pages resident on the server as fill-on-demund-clasp.

This allowed us to implement the shared virtual address space without changing the width or

bit assignments of fields in the page tables. The kernel pagein routines treat fill-on-

demand-clasp similarly to fill-on-demand-zero. Instead of zeroing a page and validating i t

for the user, page faults on fill-on-demand-clasp pages cause a call to a CLASP-specific

pagein routine which retrieves the page from the remote processor and places it in the page

frame allocated by the normal pagein routine. The changes to the normal pagein routine are

limited to an additional case in the switch statement that handles fill-on-demand pages.

The client sends MEMGET requests to the server to retrieve pages that reside on the

server. These MEMGET packets contain the above memxf er structures to describe the pages

requested. Servers reply with a MEMPUT packet that describes the pages being returned

and follow that packet with the data of the page. If the client and server have different page

sizes, the MEMPUT packet might describe a different (e.g., larger) block of memory. A client

with 512 byte pages making a request to a server with 1024 byte pages would receive two 512

byte pages.g

' These differences should be resolved when a CLASP process begins execution. The client and server should
agree on a network page size that meets their individual requirements for local pages. All network paging opera-
tions should be done in units of this agreed page size.

84

s t r u c t memxfer
<

caddr t cnx base;
caddr-t - cnx-1 - ength ;

3;

/* base I n vaddr */
/* byte count */

Figure 4.6
Information Sent for Memory Transfers

Once pages are retrieved from the server, the client marks them ditty, or modified, to

inform the pageout daemon that these pages have been changed since the last time they were

written to the local swapping device. This assumes that the server modified the page. While

it might not always be true, the alternative was to add several additional dirty bits to the

page table entry - one for each backing store that might hold the page.

This simple memory model made our prototype easy to implement. However, the

model limits performance by keeping only one copy of any page in the address space. If a

processor has a local copy of a given page, the overhead of a page fault across the network

can be avoided. One problem with replicating pages on each processor is maintaining the

coherency of the virtual address space. The replication of read-only data is a simple and

obvious way to improve performance." We describe some other work that supports multiple

instances of pages in the address space in section 6.2, under Further Performance Optimiza-

tions.

lo Our prototype keeps copies of the text (code) segment on both machines. The CLASP text-segment is filled
with read-only data (e.g., the instructions).

8
8
I
8
I

85

CHAPTER 5.

PERFORMANCE OF THE IMPLEMENTATION

CAPC allows an application program to be partitioned so that some routines execute on

a faster server processor to decrease the running time of the program. Partitioning an appli-

cations program always introduces some overhead: CAPC subroutine calls and returns are

slower than local subroutine calls and returns. Data residency also affects the partitioning’s

overhead. Some pages are accessed by the routines on the client; others are accessed only by

server routines. Some pages are accessed by both client and server routines. Pages accessed

by both processors must be moved to the appropriate processor when needed.

To overcome this overhead, the server must be faster than the client processor. The

breakeven point can be derived from the paging behavior, CAPC calling patterns, and speed

differential of the two processors. This breakeven point is diflerent for each program and can

vary within a single program depending on how it is partitioned.

In this chapter, we discuss types of algorithms that will perform well under the CLASP

system. We also discuss an existing model that characterizes paging behavior [32,33]. We

present the results of benchmarks to determine the costs of our system. These costs include

remote call overhead and network paging overhead. In appendix B, we show the results of

several benchmark programs under the CLASP system. Section 5.3 compares our empirical

results with those predicted by section 5.1. The chapter closes with a discussion of several

mechanisms for partitioning applications between client and server systems.

86

5.1. Theoretical Performance Expectations

To determine whether part of a program should be moved to a server processor, an

appropriate question to ask is: is the ezecution speedup greater than the communications

coets7 If data transmission costs are greater than the possible speedup, the problem should

not be moved to the server processor.

Several factors aflect the performance of a partitioned application. Programs where the

execution costs grow faster than the communications costs to move data between client and

server quickly overcome the communications overhead. Algorithms that access portions of a

data structure, such as tree searches, are another class of algorithms that can yield improved

performance when partitioned between processors.

5.1.1. Algorithms Appropriate for the CLASP architecture

Algorithms for solving linear systems are a good example of problems where improved

execution time on the server recovers the communications time between the client and server.

Linear systems of order n comprise an nxn matrix. The cost to move this problem to a

remote processor across a network is O(n*n). The time to factor this matrix is O(n*n*n).

The breakeven point occurs when the speedup on the remote processor matches the communi-

cations cost to move the data to the remote processor. If A(n) is the savings in execution and

T(n) is the communications cost, our breakeven point occurs when we satisfy the following

equation.

T(ta)= A (n)

c- 3

.
87

For an applications using gaussian elimination to factor matrices of order n, the

appropriate equation is:'

Kln*n = K2n*n*n

The exact value of n that satisfies this equation depends on the constants. These con-

stants are determined by the network speed, client processor speed, and server processor

speed.

To determine if there exists an n where the problem should be moved to the processor,

we examine the inequality:

If this limit is less than one, there will be some problem size n that executes faster in a

partitioned environment.

We do not want to give the impression that only higher order algorithms are applicable

to our architecture. A number of data structures have search times smaller than O(n).

Trees searches execute in time O(1og n). These searches do not require the entire data struc-

ture to be resident on the local processor. The O(1og n) probes of a tree search will move at

most O(1og n) pages from the remote processor. Additional searches, which often probe the

same initial nodes of the tree, will generate fewer page faults. Insertions, balancing, and

other tree operations can often execute with only portions of the data structure resident.

Other data structures that require less than O(n) time to manipulate are hash tables,

queues, lists, and heaps. For these data structures, the communications costs are a function

For this example, we have dropped the lower order terms from the algorithm costs.

88

of the probes into the structure.

5.1.2. Localized Data

Some data structures are accessed only by several routines. If all of these routines are

implemented on the same processor, there are never any communications costs to access that

data.2

In such cases, the costs to move this portion of an application to the program are

related only to the frequency and duration of the calls to those subroutines. If the subrou-

tines execute for more than our CAF'C call/return overhead, we expect improved perfor-

mance by moving them to a faster processor. The exact client/server speed ratio needed to

compensate for the CAPC call/return overhead depends on the time for the subroutine call

on the client.

5.1.3. Paging Patterns

In 1968, Peter Denning introduced the working set model to help manage page traffic in

virtual memory systems. The working set model uses recent page access history to predict

the short term memory needs of a program. The objective is to keep a working set of pages

resident in memory and increase the average instruction burst between page faults. The

working set model is based on the observation that programs show localized access patterns.

Working sets exhibit slow drift behavior; the working set changes gradually over time [31].

* This ignores the boundary condition when we start the process and the entire address space is resident on the
client or the client's swapping device.

U
I
I
1
I
8
I
U
B

I
8
B
8
I
8
I
8
I

I)

I

89

By 1974, Denning and others determined that the slow drift concept was wrong [32].

While programs did have phases which showed slow drift behavior, these programs also

displayed disruptive transitions between phases. Most phases used almost completely

different sets of pages, or loculify scfS[24,25,33,51,53,63]. Kahn found the following about

phases and transitions between phases:[53]

Phases covered 98 percent of the virtual time.

40 percent to 50 percent of the working set page faults occurred in transition
periods. Thus, about half of the paging occurred in 2 percent of the virtual
time.

The same phases were observed by the working set policy over wide ranges of
its control parameters.

Fault rates in transitions were 100 to lo00 times higher than fault rates in
phases.

Other observations indicate that approximately 90 percent of the virtual time is spent in long

(at least 100,000 memory references) phases. These long phases account for only 10% of the

recognized phases, the other phases are fleeting and embedded within transition periods.

To model phases and the transitions between phases, Denning built a macro-model

using semi-Markov chains. The states in this model correspond to phases and their locality

sets. The holding time of each state corresponds to the phase length for that locality set.

Within each state, Denning used existing micro-models to generate access patterns across the

pages in the locality set. Denning found that this macro-model followed the behavior of real

programs better than the existing models.

90

5.1.4. Performance Expectations

We expect that the CLASP architecture will work well for a number of applications.

These applications will have one or more of the following properties:

0 algorithms where the execution costs grow faster than the communications
costs. An example is the solution of Ax = b, which requires O(n*n) communi-
cations and O(n*n*n) execution time.

algorithms which exhibit high degrees of locality.

access methods, such as hashing and tree searching, which move small parts of
a larger data structure.

subroutines that encapsulate access to data structures. These data structures
will not move between processors, so the communications costs are only the
procedure call overhead.

0

0

0

Where communications and execution costs are of different magnitudes, the advantages

are apparent. Where both costs are of the same magnitude, the coefficients become more

important. In both cases, the exact breakeven point depends on the particular application

and its calling patterns. In some cases, demand-paging saves two network faults - such as

when the results of one remote operation are passed directly to another remote operation.

5.2. Empirical Resulte

We ran a series of benchmark programs with our CLASP kernel t o obtain a measure of

its performance. Some benchmarks provided us with the overhead of the capc mechanism

and paging costs between client and server. Several benchmark programs, acquired from

other sources, were used to generate information on the frequency of paging traffic between

client and server systems. In this section, we discuss the benchmarks used to determine the

CAPC call/return overhead and the network paging costs. Appendix B contains performance

data for other benchmarks and looks at timing, speedup potential, and paging behavior of

8
I
I
1
R
I
I
R

8
I
8
1
t
1
8
8
8
I

e

I
1
8
8
I
I
I
U

91

those benchmarks. The next section (5.3) compares the observed paging patterns with the

behavior we predicted in section 5.1.

Remote operations - both calls and data accesses - are almost always significantly

more expensive than local calls. The network overhead accounts for most of this difference.

We can divide the network overhead into two pieces: latency and bandwidth. For smaller

messages (such as control transfer packets), network latency dominates the overhead. Other

research provides insights towards developing low-latency, high-bandwidth networks

between processors [50,78].

5.2.1. Remote Call and Paging Costs
8

Figure 5.1 contains the times for CAPC calls and returns in our prototype. The CAF'C

I
8
1
I
I
I
8
I
I

overhead number represents the time for the client to invoke a subroutine on the server with

no arguments and for that subroutine to return. The number is an average across 10,000

invocations of the subroutine. Timings of individual calls - to obtain minimum, maximum,

and standard deviation figures - was not possible with our hardware. The clock on our sy5

tems ticks at 50 Hz, the smallest interval we can measure is 20 milliseconds.

Figure 5.1 also contains the time for network paging. We used two different programs

to generate this data. The first page fault program is based on the CAF'C call overhead pro-

gram. In this version, the calling routine accesses a global variable once during each iteration

of the loop. The server routine accesses this same variable once during each call. This causes

2 page faults for each CAPC call/return pair. We determined paging costs by subtracting

the known CAPC call overhead. From this program, we can determine the time for a pair of

page faults.

92

The second program alternates calls to subroutines on the client and server that step

through a large array. We ran this test with arrays ranging from 100 through 400 pages -

8192 Kbytes through 3276 Kbytes. Arrays larger than approximately 2200 Kbytes filled the

available physical memory and introduced other factors into the times; the desired page

would not be resident in main memory and had to be retrieved from the swapping device.

The numbers in figure 5.1 reflect the times for 2000 Kbyte arrays. Because this program gen-

erates long strings of page faults in one direction, we can time those strings to determine the

times to send or receive pages. This allows us to break down the round-trip costs obtained in

the first paging benchmark.

These benchmarks were run using the loopback interface to the same processor. These

timings show that the process spends large amounts of time in the system kernel. We believe

that most of this time is TCP/IP protocol overhead. With 53 milliseconds per page fault,

our prototype kernel can process 18.8 pages or 154,000 bytes per second. Additional bench-

marks showed that a TCP socket could only move 297,000 bytes per second on our system.

Our prototype provides more than half of the throughput with the current network protocols.

Synchronous page requests and page transfers account for the lost page bandwidth.

Figure 5.2 shows the times for empty procedure calls using CAF'C, Sun RPC (both UDP

and TCP transport mechanisms), and Xerox Courier. In all but one case, the times are aver-

ages across 10,000 calls. The times for Courier with the standard kernel for 1,000 calls. The

Courier times for the standard kernel are more than an order of magnitude slower than the

other mechanisms. This is caused by the SUN TCP implementation. Instead of flooding the

network with small TCP packets, the SUN TCP code delays small packets so it can combine

them into a larger packet. If no further data arrives, a timer signals the TCP code to send

CAPC Test Case
~

CAPC Call Overhead

CAPC + 2 page transfers
2 page transfers
1 Page Transfer

CAPC + 250 page xfers

client->server avg/page
server-> client avg/page

avg/page

93

Client
system time

4.46

56.74
52.06
26.03

26.34
30.36
22.28

Figure 5.1
CAPC Overheads

[all times in milliseconds]

Server
system time

4.45

56.70

26.86

Wall
time
8.98

115.44
106.42
53.21

53.42
53.52
52.92

the small packet. From these times, we can see that the timer fires every 200 milliseconds.

11 m - For ihme id.a, but: u / u ~ r i e ~ ~ c i & iii-~ges that fdl Z ~ G ~ V thio thii&dd. Y e r ; i~diE~?l

the kernel to lower this threshold and re-executed the Courier benchmark^.^ This small

packet threshold does not affect the timings for the other benchmarks because they send

larger packets between client and server.

For small argument vectors, the CAPC call packet contains a copy of the argument vec-

tor. Larger argument vectors are passed by pointer; the server will demand page the argu-

ment vector across the network. Our prototype sends up to 64 bytes of arguments in the

CAPC call packet. For these small argument vectors, a CAPC costs approximately 9 mil-

liseconds. For larger argument lists, the call time is 9 milliseconds plus the time to move the

appropriate stack pages to the server. Because these stack pages are required on the client

after the called subroutine returns, they must be paged back from the server routine. In

* Other TCP implementations we have seen do not have this small packet threshold. For example, the 4.2 BSD
kernel does not hold these small messages. Also, it is worth noting that most Courier calls will be larger than the
10 byte small-message threshold. Return messages, if they are simple integer values, fall below the threshold.

94

Mechanism
CAPC

Sun RPC (udp)
Sun RPC (tcp)

User Time System Time Wall Time
0.0 4.46 8.98

0.432 3.076 7.942
0.846 3.118 8.014

Courier (stock kernel)
Courier (modified ker-

0.0
0.48

Figure 5.2
Empty Call Costs

[all times in milliseconds]

0.020
5.26

most cases, argument vectors larger than 64 bytes will take approximately 115 milliseconds.

399.960
11.78

If the argument list crosses page boundaries (the sun-3 hardware uses 8 kbyte pages), the

costs go up by another 2 page faults - another 100 milliseconds. Figure 5.3 shows the aver-

age costs for CAPC calls with argument vectors ranging from 0 to 1024 bytes. These times

are to set up, execute, and return from the remote subroutine.

Since most procedure calls have small argument lists i t is sensible to spend our efforts

making the most frequent case execute quickly. Code analysis done for RISC machines has

shown that, in a UNM environment, many.procedure calls have fewer than 6 arguments.

These procedures often account for more than one-half of the dynamically executed pro-

cedure calls [35,70]. Our prototype, which provides 64 bytes of fast arguments, handles 16 4-

byte arguments before falling back to the slower call mechanism. Therefore, our optimized

CAF'C calls for small argument vectors should handle most procedure calls. Larger argument

lists are processed more slowly, but they make up a small percentage of the subroutine calls.

8
I
I
1
I
i
I
1
I
I
I
8
I
8
I
U
I
8
I:

95

601 I (milliseconds) 40u 20

I I I I I I I I
128 256 378 512 640 768 896 1024

Argument Vector Size
(b Y t 4

Figure 5.3
CAF'C Overheads for Different Argument Lengths

5.3. Comparing the Facts to the Theory

The LINPACK benchmark described in Appendix B showed very good performance in

our system. This benchmark moves data of size O(n*n) from client to server and performs

O(n*n*n) operations on that data. The breakeven point for this benchmark came for sys-

tems of size 59. For a problem of this size, the server had to execute at 17 times the speed of

the client processor to compensate for the network overhead. For matrices of order 81, the

server had to be only twice as fast as the client to compensate for the network overhead.

This benchmark used matrices dimensioned at for 200x200 systems. This over-

allocation generated extra page traffic by removing some of the locality within the array.

Another version of the benchmark, using matrices dimensioned to the exact size of the sys-

96

tem, shows a better breakeven point. The speed differential can compensate for the overhead

on a 42x42 system. A server executing twice as fast as the client breaks even on a 54x54 sys-

tem.

A second benchmark, the compress utility did not show an improvement when parti-

tioned between client and server [87]. This program operates as a filter on its input data.

For the test we ran, the network overhead was larger than the total execution time for a sin-

gle architecture version of the program.

5.4. Considerations For Partitioning Applications

Two factors affect the placement of a routine: the cost to execute a CAPC call and the

cost to demand page the required memory to the remote processor. Small subroutines often

do not execute enough instructions for the client/server speed differential to overcome the

CAPC overhead. Other subroutines may execute enough instructions to make up the CAPC

overhead, but their data access patterns may cause an excessive number of page faults.

In terms of Dennings model, we want to partition our program so that cross-

architecture calls have a close correlation with transitions between phases. Short procedure

calls may generate extra paging traffic and disrupt the phase/transition page fault patterns.

In this section of the thesis, we discuss how these factors can affect performance. The

next section presents an existing algorithm for partitioning applications between client and

server processors.

97

5.4.1. Frequency and Duration of Calla

In our implementation, a simple CAPC call and return costs approximately 9 mil-

liieconds. Local subroutine calls, using only several microseconds, can be considered free

when compared to 9 milliseconds. If the routine executes locally in less than 9 milliseconds, a

remote call will always be slower, regardless of the speed of the remote CPU. If the local

time is greater than 9 milliseconds, the breakeven point depends on the relative speeds of the

processors (and the data residency).

Ignoring data residency, a subroutine that executes in 18 millisecond on the workstation

can be moved to a server that executes twice as fast as the workstation. The server will exe-

cute the subroutine in 9 milliseconds, plus the 9 millisecond CAF'C overhead, and achieve the

same total time as the workstation invocation.

In practice, data residency affects the breakeven point by introducing paging overhead

to move the data to the remote processor. Appendix B shows several program examples, how

they perform in uniprocessor mode and under CAF'C, and what speed differentials are

required to break even for different problem sizes.

The frequency of calls to a subroutine affects its placement. If a subroutine is called

only a few times during the execution of a program, the overhead of a CAPC call has little

impact on the total running time of the program. An extra several hundred milliseconds has

little affect when a program executes for minutes or hours. However when calling routines

hundreds or thousands of times during the execution of a program, any additional overhead

becomes significant. Section 5.5 describes techniques to partition routines between client and

server systems to minimize this overhead.

98

An alternate approach is to replicate these frequently called subroutines on both archi-

tectures. For long-executing routines (e.g., factoring large matrices), this is not practical.

Replication of long-executing routines is counter-productive; we want these routines to exe-

cute on the faster processor. For short subroutines - like sqrt() or strcmp() - replication is

important. Without replication, the overhead to invoke remote instances of these routines

can overwhelm any performance improvement gained by moving long-executing subroutines

to the faster processor.

5.4.2. Data Residency

In our prototype, each page exists on exactly one of the processors. If a pair of pro-

cedures on different processors alternately access a page, that page bounces between the pro-

cessors. We can reduce or eliminate this effect by placing both procedures on the same pro-

cessor.

Page replication schemes eliminate the problem when neither processor modifies the

shared data. Each processor maintains a copy of the page and allows read access by subrou-

tines executing on that processor. If a subroutine attempts to write on a replicated page, the

other copy must be updated or invalidated. Again, the time for these operations raises the

overhead associated with splitting these routines. But the overhead is often significantly

lower than a non-replicated environment.

99

5.5. Determining Partitionings

Subroutine call frequency and data residency are factors in determining how to partition

an application. These factors, by themselves, provide information about costs of a partition-

ing. However, they do not determine partitionings.

The next two sections discuss several approaches to partitioning applications. The first

section discusses several tools that can be used to provide information about call patterns and

the duration of procedure calls. The data gathered from these tools can be used to make

decisions. It can also be used as input to more formal partitioning schemes. One of these

schemes is discussed in section 5.5.2.

5.5.1. Heuristic Partitioning Tools

Profiling tools are useful for identifying where a program spends most of its time. The

UNIX utilities prof and gprof provide different types of profiling. Prof provides a summary of

the total time spent in a routine and the number of times i t was invoked. Gprof provides this

information and adds the calling patterns between routines. For each routine, gprof reports

the calling and called subroutines.

An easy way to determine a partitioning is to execute the program with the profiling

tools. From this data, long running routines or sets of routines (e.g. a locality set of subrou-

tines) can be identified and moved to the server.

100

5.5.2. Theoretical Partitioning Methods

Other researchers have generated algorithms and heuristics for partitioning applications

in a distributed environment. These approaches use mathematical tools to determine the

partitioning [38,39,79].

In their 1978 paper, Stone and Bokhari use graph theory to determine subroutine place-

ment in distributed systems [79]. Each subroutine in the application is a vertex in their

graph. The edges between vertices represent the calling patterns between routines. Each

edge is given a weight corresponding to the communications costs if the two vertices (subrou-

tines) are on different processors. Two additional vertices, representing the processors, are

added to the graph. From each processor vertex, edges are drawn to all subroutine vertices.

These edges are assigned weights that correspond to the execution time for that subroutine

on the other processor. Because the edges represent the costs if two routines are on separate

processors, the weight is the execution time for that routine on the remote processor. After

generating this graph, they generate a minimal cutset of the that graph. The processor ver-

tices will be in different subgraphs. The two subgraphs contain the subroutines to be loaded

on each processor. Stone shows that the minimal cutset generates an optimal placement for

the subroutines [79].

Edge weights consider how often one procedure calls another and the data transfered for

each call. In our shared memory model, we must also consider routines that interact through

shared global variables. This consideration adds edges to the graph for subroutines that do

not call each other, but do access the same variables.

We want to bind certain routines to specific processors. For example, most system calls

must execute on the client processor - where the appropriate kernel state information

101

I
I
I
1
I

I
I

resides. We can bind a procedure to a specific processor by adding an infinite weight edge

between the vertices for the desired processor and the appropriate subroutine. In the the

processor/node context, this indicates that the execution time of the subroutine on the

remote processor is infinite, or that it can not execute on the remote processor. In the cutset

context, this edge will never be in a minimal cutset. A cutset with this edge would have

infinite weight.

These mathematical models can yield optimal or near optimal partitionings for applica-

tions. Some of their input data can be gathered from static analysis of programs. The tools

discussed in section 5.5.1 can provide additional information for calculating edge weights.

Further research into combinations of these tools could provide automatic partitioning

schemes that combine all of these tools.

I
I
1
I
I
I
I
I

102

CHAPTER 6.

SlJMmmY

This thesis has introduced CLASP, a new software architecture for sharing processor

resources. CLASP maps the traditional UNIX process model onto a new foundation. CLASP

provides a transparent mechanism for transferring control between processors and allows sec-

tions of an application program to execute on the most appropriate architecture. This con-

trol transfer is implemented by the Cross-Architecture Procedure Call or CAPC. CAPCs

allow existing applications to be partitioned between processors without making source code

changes.

Section 6.1 discusses some additional research suggested by our investigations. Some

approaches to reduce the overhead of the CAPC are discussed in section 6.2. The chapter

closes with a summary of our results.

6.1. Further Research

There are a number of additional research topics related to CLASP and the CAPC.

Some of this research is concerned with improving CAPC performance: using faster network

protocols and reducing network paging traffic. These research areas are discussed in section

6.2, Future Performance Optimizations.

Other research to add new features to CLASP and to apply existing tools to CLASP sys-

tems includes: multiple compute servers, multi-thread computations, multi-architecture

debugging, asynchronous traps, 1/0 operations on servers, process migration, operating sys-

1
I
I
1
I
I
I
I
I
i
I
I
I
I
I
8
I
I
I

103

tem independence, and automatic program partitioning. Each of these is described in more

detail in the following sections.

6.1.1. Multiple Servers

Our prototype supports two architecture CLASP programs. The extension to three or

more architectures requires additional work in communications between the different proces-

sors.

As the number of architectures (and processors) climbs, the replicated address space

work of Kai Li becomes a more important factor to reduce the cost of network paging [60,61].

In these situations, a process must determine which CPU has the copy of the page - in addi-

tion to moving it to the local host.

6.1.2. Multi-Thread Computations

A number of existing systems provide multiple control threads within the same address

space [22,28,30,74]. We would like to see a combination of these systems and our CAPC sys-

tem. Such a combination would allow programs to use the most appropriate mechanism for

performance improvement - parallelism or fast sequential processing - within a single

application.

Our current prototype uses the single-thread nature of the Sun UNM process to stream-

line some operations. The same agent on the server processes page requests and control

transfer requests. A multi-thread implementation would need to partition the address space

and control flow operations. Our prototype deferes the propogation of changes in the address

104

space until it passes the control thread to the remote processor. A multiplethread imple-

mentation requires a different address space propogation mechanism.

6.1.3. Debugging

The CLASP system introduces several problems for debugging systems. Symbolic

debuggers must now understand the instruction and calling sequences for different processor

architectures. The system debugging facilities (e.g., the U N M ptrace(2) system call) must be

able to manipulate the control thread of a program when it is on a remote processor.

6.1.4. Asynchronous Traps

The UNM signal mechanism provides a means to transfer control to a specific routine

on the occurrence of specific events. Our prototype does not address the pr.oblem of how

these signals should be processed when the control thread is on the remote processor.

6.1.5. 1 / 0 Operations on the Server

Our prototype performs all system calls, including 1/0 operations, on the client system.

We make this restriction because the existing file descriptors are stored in the kernel on the

client system. As long as the correct file descriptors are presented to each system, it should

be possible to perform 1/0 operations on both systems. One approach that supports this

operation is to modify the system call templates to select the proper system for the system

call. This technique has been used in systems like the Newcastle Connection to redirect sys-

tem calls to the kernel that holds the appropriate state information [27].

I
I
I
1
I
1
I
I
I
I
I
I
I
I
1
I
I
1
I

105

6.1.6. Graceful Process Migration

Because the server kernel only requires information about the address space of a process,

i t should be able to move all of this state to another processor. There are no file descriptors

to move between server processors. Further work with the CLASP system should produce

mechanisms that allow servers to re-direct clients to other processors of the same architec-

ture. This can be used to limit the load on a particular server. It might also be used when

rebooting a server; existing clients could be moved to other processors.

6.1.7. Operating System Independence

Because the CLASP server maintains only address space information, we should be able

to implement servers with an open systems architecture. Clients running the UNM operating

system might communicate with servers on other operating systems such as DEC’s VMS,

CDC’s NOS, the Stanford V kernel, CMU’s MACH, and other operating systems. The rou-

tines that execute on the server do not access system functions, they only use the processor to

execute instruction sequences.

I
I
I
I
I
I
I
I

6.1.8. Automatic Partitioning

The algorithms described in section 5.5 partition programs to reduce the communica-

tions costs and improve the performance of a program. Compilers already generate data

dependency information and can generate control flow information. Software generation sys-

tems (compilers and tools like the UNIX make utility) could use this information to partition

applications without user interaction [40].

106

6.2. Future Performance Optimizat ions

CLASP systems rely on an underlying network communications system to transfer con-

trol between processors and to demand page the virtual address space between processors.

Two approaches to reduce the overhead of the network communications are to employ faster,

lower-overhead network protocols and to reduce the number of network operations. These

two topics are discussed in the following sections.

6.2.1. Network Protocols

Our current CLASP prototype uses the TCP/IP network protocol to communicate

between client and server processes. TCP/IP provides a full-duplex, error-free communica-

tions channel between two endpoints. The protocol achieves these features at a cost in

throughput and latency. However, the other available protocol (UDP/IP) does not provide

reliable delivery of messages.

CLASP does not require a stream connection. The CLASP network operations can be

mapped directly onto a protocol that provides guaranteed delivery of messages. Such proto-

cols might provide low latency messages, which would improve CLASP network paging

times.

6.2.2. Network Paging Performance

Another approach to reducing the network overhead of a CLASP system is to reduce the

traffic across the network. In this section, we describe two approaches to reducing the page

traffic between CLASP clients and servers.

1
I
I
1
I
I

I
I
I
I
I
I
I
I

The UNM system dynamically extends a program's stack segment to accomodate the

calling patterns of that program. The kernel never reduces the size of the stack segment,

even if the pages are no longer used by the application program. In our prototype, this gen-

erates unnecessary page traffic. If the server extends the stack onto a page that has been

used previously by the client, the server retrieves the page through the network. This page,

which is about to be overwritten with new data, could have been a fill-on-demand page and

serviced locally. To eliminate this page traffic, the CLASP system could remove the pages

beyond the stack pointer at each CAPC call and return. These pages, located beyond the

current stack pointer, should be unused and can be discarded.

Our CLASP prototype maintains a single copy of each page in the virtual address space.

This simplifies the page management scheme but increases pagins activity. Kai Li and Paul

Hudak describe a virtual memory system for loosely-coupled systems [61]. Their system

allows multiple instances of each page in the address space. Extra copies of a page are

marked read-only. Attempts to modify these pages generate traps to the operating system

that invalidate the extra copies of the page and proceed with the updates. This approach

allows read-only pages (and pages that are read often and written seldom) to be replicated on

the appropriate processors.

6.3. Conclusions

In this thesis, we introduce the Cross-Architecture Procedure Call or CAPC. The

CLASP software architecture uses CAPCs to provide access to compute servers. The CAPC

is a transparent mechanism to transfer a control thread between two processors. Unlike its

predecessor, the Remote Procedure Call, CAF'Cs allow local and remote procedures to com-

108
-

municate through shared global variables including pointer data types. This allows existing

programs, that use these constructs, to be partitioned between client and server processors

using CAF'Cs without any source code changes.

In the first chapter, we propose criteria for our new architecture. These criteria are:

The user need not restructure or recode his applications.

The programmer can specify an application's partitioning. Changes to this par-
titioning do not require changes to the application source code.

Interactive tasks execute on the workstation. That is, the workstation is not
used as a simple terminal to submit jobs to the supercomputer.

CPU-intensive tasks execute on the supercomputer.

Optimization techniques, such as vector operation and parallel operations,
specific to certain architectures are still useful for code segments executed on
those architectures.

The compilers for each system need not be modified; a modified loader combines
the output from the respective compilers into an executable file.

The operating system resolves issues of control transfer and data transfer
between systems.

CLASP meets these criteria. CLASP satisfies the first four criteria because i t provides a

transparent interface between routines on different processors. Routines on different proces-

sors can pass pointer data types and share global variables. This transparency allows users

to place routines on the architecture best suited for those routines. CLASP allows each

architecture's compilers to apply appropriate optimization techniques to routines that will

execute on those processors. Our prototype does not modify existing compilers; i t uses a new

loader to combine object files for each architecture into a multi-architecture executable file.

The CAPC runtime implementation is handled within the operating system. The operating

system transparently handles paging traffic between local and remote processors.

1
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

109

Unlike the Remote Procedure Call, the Cross-Architecture Procedure Call does not res-

trict the interface between procedures. CAPCs model the procedure call interface more com-

pletely than RPCs. This feature allows existing applications to be recompiled for a multi-

archiecture environment and yield improved performance without any source code changes.

The Cross-Architecture Procedure Call is an elegant mechanism for accelerating specific

portions of applications programs. It extends a simple process model onto a new foundation

that provides improved performance without introducing restrictions on calls between pro-

cedures, access to global variables, and passing pointers.

110

. . .

111

APPENDIX A.

ARGUMENTS AND RETURN VALUES

This section describes mechanisms for passing arguments, determining the size of the

argument list, and how return values are handled. This is a survey of several architectures

and includes: how to determine the argument list location and size when acting as client,

how to copy and use the argument list location and size when acting as a server, how to pack-

age the return results when acting as a server, and how to interpret the return results when

acting as a client.

Each of the systems described in this appendix use the same data representation. They

all use the IEEE floating point standard internally. They all store integer values with the

same byte ordering.

kl. Motorola 68000

The Motorola 68000 architecture does not load a register with the address of the argu-

ment lit as part of the procedure call instruction. Instead, the convention is to place the

arguments on the stack. The subroutine call instruction pushes the return address on the

stack. At procedure entry, the argument list is located 4 bytes above the current stack

pointer. Figure A.l shows the 68000 stack frame at procedure entry.

112

argument n
argument n-1

argument 2

argument 1

return address I - Stack Pointer

Figure A.l
Motorola 68000 Stack Frame

(at procedure entry)

Compilers for the 68000 architecture generate code that executes a link instruction as

the first instruction of a subroutine. The LINK instruction pushes the contents of a specified

register onto the stack and loads that register with the value of the stack pointer. The regis-

ter modfied by the LINK instruction is then used as a base register, or frame pointer, to

access both arguments and local variables for that procedure. The agument vector starts 8

bytes above the value in this register (traditionally register A6). The first 4 bytes above A6

are the previous contents of A6; the next 4 bytes are the return address. The stack after the

procedure preamble is shown in figure A.2.

The CLASP client routines for the 68000 architecture determine the length of the argu-

ment vector by examining the instruction after the procedure call. Because the hardware

does not provide a mechanism for including the length of the argument vector as part of the

procedure call instruction, this instruction pops any arguments from the stack. The CLASP

kernel decodes this instruction to determine the length of the argument vector. If the next

instruction does not pop arguments from the stack, the CLASP kernel assumes the procedure

I argumentn I
argument n-1

argument 2

return address

A6

local variables

Stack Pointer

Figure A.2
Motorola 68000 Stack Frame

(after procedure prolog)

has no arguments.

The CLASP server routines for the 68000 architecture copy the argument vector and

push the return address to provide the called procedure with a stack that appears to have

been generated by the 68000 subroutine call instruction.

Procedures and functions return their results in the DO and D1 registers. Most func-

tions return their values in the 32-bit DO register. Floating point results are returned as 64

bit values. For floating point results, both DO and D1 registers are used.

A.2. Alliant FX Series

The Alliant FX series is multiprocessor system that contains several computation ele-

ments and 1/0 processors. The 1/0 processors are members of the Motorola 68000 family.

114

-
The computation elements provide a superset of the 68000 instruction set. Both processors

use the same stack formats and calling sequences. The Motorola 68000 section of this appen-

dix contains more information about this stack format, how to determine the location and

size of the argument vector, and how return values are stored.

A.3. ConvexC-1

The Convex C-1 uses a register, the argument pointer, to pass arguments to called sub-

routines. The calling routine builds an argument vector and sets the argument pointer to

point at the base of this vector. Called routines access arguments as offsets from this pointer.

Figure A.3 shows the C-1 stack frame at procedure entry, just after the procedure prologue

has allocated storage for local variables.

CLASP client routines determine the location of the argument vector from the contents

of this register. C-1 compilers store the argument length, as a count of 4 byte words, at the

address just below the argument pointer. CLASP client routines determine the argument

vector length from the value at this location. CLASP server routines load the argument

register with the passed value.

The C-1 stores return values in the S O register. This 64 bit register contains all return

values.

115

Callers RTN Address

Caller LSI, part 2
- - Caller FP

Caller Automatic Storage Wl
...

- - AP h g 1
h g Count (words)

Callee LSI, part 1 1
I Saved S registers I

Saved PSW
Return Address

Callee LSI, part 2
- - Callee FP

Callee Automatic Storage I - - SP

Figure A.3
Convex C-1 Stack Frame
(after procedure prolog)

A.4. IBMRT

The IBM RT-PC presents arguments to subroutines as an array of bytes on the stack.

For efficiency reasons, the first 4 arguments are passed in general registers 1-2 through r5

respectively. For subroutines with only a few arguments, this convention improves perfor-

mance; fewer memory operations are required to pass arguments to the subroutine. For rou-

tines that take the address of any of these first four arguments, the called procedure’s prolo-

gue saves them in a reserved area in the called procedure’s stack frame. A multi-word struc-

116

ture might be split; the first several words of the structure may be pased in one or more

registers, the rest may be placed on the stack. After the called procedure moves these regis-

ters to memory, they form a contiguous argument vector with the other arguments. On the

IBM RT, the general register r l is used as a stack pointer. The IBM RT stack a t procedure

entry is shown in figure A.4.

Upon entry, the called procedure adjusts the stack pointer to reserve space for local

variables and temporary space. The IBM RT does not use the stack in a true stack-oriented

,

high addresses r - - - - - --- - - - - - 1
I I
I I
I I
t Other I

I Stack Frames lower addresses I

I I

argument 5
I I

I I ; Called Procedure
Register Save Are4
I I

Argument 3

R6:
R7:
R8:

R11:
R12:
R13:
R14:
R15: I Return Address I

Figure A.4
IBM RT-PC Stack Frame

(at procedure entry)

117

...
argument 6
argument 5

lower addresses argument

fashion. Instead of pushing and popping values as needed, the stack is extended to the max-

imum depth required by the procedure and left there. Local variables are referenced relative

to the R13 register; parameters to other subroutines are referenced relative to the R1 regis-

ter. Figure A.5 shows the stack frame after the procedure prologue has executed.

Reserved Space fon
I Arguments 1-4 I

Link Save
5 words

Saved Registers
R6-Rl5

Local Variables

L

>

The IBM RT returns values in registers R2 and R3. Simple values, those of 32 or fewer

bits, are completely contained in R2. Floating point values, which are passed as 64 bit quan-

tities, are passed in both R2 and R3.

R6:
R7:
R8:
R9:
R10:
R11:
R12:

Figure A.5
IBM RT-PC Stack Frame

(after procedure prolog)

118

Unfortunately for our goals, the compilers on the IBM RT use different conventions for

returning structures and passing procedures as formal arguments than we have seen. These

differences make a CLASP system between our SUNS and the RT impossible.

119

APPENDIX B.

PERFORMANCE MEASUREMENTS

This appendix describes the performance of several test programs using our CLASP pro-

totype kernel. We compare the execution times using our CLASP kernel against the execu-

tion time for the program with a standard UNIX kernel.

B.l. Double Precision LINPACK Benchmark

We obtained a copy of the LINPACK linear systems library from Argonne National

Laboratories [36]. This package contains FORTRAN subroutines to solve the equation:

A x = b

A benchmark program included with the library performs a number of iterations generating,

factoring, and solving a matrix. The A and b matrices are dimensioned to 200 elements.

Another variable determines the size of the system to be solved. We partitioned the FOR-

TRAN program into separate modules. The LINPACK routines to factor and solve the sys-

tem execute on the server processor. The matrix generation routine and benchmark harness

execute on the client processor.

We ran the benchmark for systems whose order ranged from 5 through 200. For each

size, we collected the following statistics: client user and system time, server user and system

time, total time, page traffic, number of calls, and the time for a non-CLASP version. Each

execution made 53 CAPC calls and returns. The number of calls is a function of the bench-

mark itself, not the size of the system.

120

time
(seconds)

2ooo 1
1500{

1000

500

0

total (tx server)
control

total (k ierver)

total (4x server)

3020 40 60 80 100 150 200
Order of System Solved

Figure B.l
LINPACK Benchmark Execution Times

Arrays Declared for 200 Elements

The graph in figure B.l shows the execution times for the LINPACK benchmark. Fig-

ure B.3 shows the number of pages moved between client and server for each benchmark run.

Figure B.2 shows the speed ratio between client and server to recover the CLASP over-

head. Matrices of smaller order than 59 incur more overhead than can be made up on any

server. At 59, the overhead can be offset with a processor that is approximately 15 times fas-

ter than the client. When the matrix is of order 81, the server need be only twice as fast as

the client to recover the overhead.

121

20 -

15 -

10 - Server /Client
Speed Ratio

5 -

0

I

I I I I 1 I I I I 1

Figure B.2
Speedup required to pay for CAPC overhead

Large dimensioned Arrays

In figure B.3, the paging traffic appears to grow linearly with the size of the system.

The overdimensioned matrices interact with the page size to produce this behavior. Each

page holds more than one row of the matrix. A page fault moves at least an entire 200 ele-

ment row, even though only the first 5 columns of that row will be used. Each page holds

more than one row of the matrix. For matrices of order 40 through 80, we can discern the

steps in the page traffic.

This benchmark uses over-dimensioned arrays. Therefore, array accesses are spread

over a larger section of the address space. In the CLASP environment, the sparse use of the

address space results in extra paging overhead. Figure B.4 shows the breakeven points for a

version of this benchmark that uses arrays dimensioned to the exact size of the problem being

solved. Because the smaller array is stored in a more compact section of the address space,

122

page
traffic

1200

600

400

200

total pagea to server
total pages from server

I I I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200

Order of System Solved

Figure B.3
LINPACK Benchmark Network Paging

Arrays Declared for 200 Elements

the paging traffic is lower than in the original benchmarks. This reduces the breakeven

point. With this modification, the CLASP system can break even as soon as the system is

order 42 - instead of order 59.

We believe that this benchmark does not show the true advantages of our demand-

paging system. The benchmark builds and factors the A matrix a number of times. The

server does the factoring; the client rebuilds the matrix. This causes additional paging over-

head. We feel that a more realistic situation is where the A matrix is factored once and then

used to solve the system for many different values of b.

Figure B.5 shows the pages transferred during virtual time intervals for the execution of

the benchmark for a 75x75 matrix. Each timeslot represents 50 milliseconds of processor

time. The paging traffic is concentrated in short bursts. Half of the paging traffic occurs in

123

approximately 7% of the virtual time for this program.

Figure B.6 shows the number of times each page moved between processors. This graph

does not include the movement of the stack page; the only stack movement was for a single

page to the server. Each point on the graph represents a page of 8192 bytes.

Speed Ratio

0 25 42584 75 100 125 150 175 200
Order of Matrix

Figure B.4
Server/Client speed ratio to break even

Exact Dimensioned Arrays

124

10

5 pages transferred
per time unit

0 II 1 b
1 - I I
0 1000 2000

virtual time - 50 msecs/unit

Figure B.5
Linpack Page Transfer Patterns

I
3000

60
.

Times Paged
across Network

I "-0

.

.
WUH.........

20 40 60
Page Frame

80 100

Figure 8 . 6
Page Transfer Frequency

125

B.2. Compression Program

We partitioned the compress program from the 4.3 BSD distribution into client and

server routines [87]. This program uses a modified Lempel-Ziv algorithm to generate codes

for common substrings and replace them in the compressed file.

A profiling run showed that the program spends much of its time in two routines:

compress() and outpufo. We built a version of the program with these two routines on the

server architecture.

We used the partitioned program to compress a copy of our U N M kernel. The program

compressed this 472,689 byte file into 296,314 bytes. We used the UNM gprofl l) utility to

determine what portions of the program used the most CPU time. The compress() function

was invoked once and used 11.7 seconds of CPU time. The output() function was invoked

159,280 times and used another 7.13 seconds of CPU time. Although each invocation of the

outpufo subroutine was too short to make a CAPC advantageous, all but two of these invoca-

tions came from the compress() routine - which is on the same processor as the output rou-

tine. Output() made a small number of calls to routines on the client processor (39 calls in

this instance).

We built a version of the compress program with the compress() and output() functions

on the server processor. For the data files we ran, the partitioned program’s overhead was

larger than the execution time of the original program.

Figure B.7 shows which pages were moved and how often. Only two stack pages moved

- each moved 1 time. The stack frames are not included in this graph. Page 16 moves

because most of the static variables are on that page. The client and server routines are

126

accessing different variables that happen to be on the same page. A more sophisticated

loader might place these variables on different pages to reduce this contention.

Figure B.8 shows the actual paging behavior of the program. This depicts the pages

transferred during each time slot. Each timeslot is 50 milliseconds of user time; the time

spent transferring pages between hosts is not included. Like the partitioned LINPACK

benchmark, this program generated most of its network page faults in a short time period.

Half of the page faults were generated in approximately 5% of the virtual time.

.

I
20

I I
40 60

Page Frame

Figure B.7
Page Transfer Frequency

8
I
1
1
I
I
a
m
I
I
I
I
I
1
B
3
8
!
I

127

pages transferred
per time unit 6

3

0
0 500 1000

virtual time - 50 msecs/unit

Figure B.8
Page Transfer Patterns

1500

128

APPENDIX C.

CODE SAMPLES

This appendix contains sample code segments for routines that demonstrate some

features of the CLASP architecture.

The first sample shows how local and remote procedures can be passed as formal

paramters to other procedures. There are no special actions to differentiate between local

and remote procedures.

The second example shows a program that builds and traverses a tree structure. T i e

program passes pointers between the client and server; as the program traverses the tree, the

demand paging system moves parts of the tree as the program accesses them. The routines

have the same structure and arguments as they would if compiled for a more traditional

single-processor system.

C.l. Procedures as Formal Parameters

This example demonstrates how the CLASP system allows the applications to pass pro-

cedures as formal parameters. No special compilation techniques are required to account for

client and server differences. Both local and remote procedures are stored in the argument

list using the same representation. The called procedure does not require special operations

to differentiate between local and remote formal procedures. Figures C.l and C.2 show the

client and server portions of a program that passes procedures as formal parameters.

129

extern l n t foosquare 0 foocube 0 , foo 0 ;

main 0
.I

l n t

for
<

3

I++)

j = f o o (foosquare i) ;
j = foo (foocube, I);

l n t foosquare (1) l n t I;
<
3

return (i * 1);

Figure C.l
Formal Procedures - Client Side

l n t foo (proc, arg)
l n t (*prod 0;
l n t arg ;
<

/* procedure parm */

foocube (arg) l n t arg ;

return (arg * arg * arg);
3

Figure C.2
Formal Procedures - Server Side

130

C.2. Pointer Structures

This sample program builds and traverses binary trees. Some of the tree manipulation

routines execute on the client; others execute on the server processor. The code in this exam-

ple was written for a single processor system.

There were no changes to the source code to make it run in a CAPC environment. We

only changed the linking phase of the compilation process to use our new loader. Figure C.3

contains the main section of the program, which executes on the client. The code in figure

C.4 performs several operations on the tree. This code also executes on the client. The code

in figure C.5 traverses the tree in postorder and preorder. These two routines execute on the

server processor.

I
I 131

I
6
1

P
I
1

main (argc, argv)
i n t a rgc ;
char **argv;
<

l n t I, value, parms;
char buf C1281, cmd;
s ta t ic s t r u c t node roo t ;

while (p r in t f (VMD : "1

If (s t r l e n (buf) =
parms = sscanf (buf
switch (cmd)
<

<

case '1':

f f l u s h (s tdout) , (gets (buf) != NULL))

lnorder (&root) ; break;

preorder (&root> ; break;

postorder (&root) ; break;

i = i n s e r t (value, &root) ;
p r i n t f ("value %d, now has %d h i t s \n" , value, i) ;
break;

i = f ind (value, &root) ;
p r i n t f (tfvalue %d has %d h i t s \n" , Value, I) ;
break;

case 'L':

case 'R ' :

case 'A ' :

case 'F':

case 'Q':
got0 q u i t ;

3
3

q u i t :
e x i t (0) ;

3
Figure C.3

Pointers in a CAPC environment - Main code

132

f i n d (value, root) i n t value; s t r u c t node *root ;
4.

if (root = (s t r u c t node *) NULL) r e t u r n (-1);
i f (root -> value = value) r e t u r n r o o t -> h i t s ;
i f (roo t -> value > value) r e t u r n f i n d (value, r o o t -> l e f t) ;
i f (roo t -> value < value) r e t u r n f i n d (value, root -> r i g h t) ;
r e t u r n (-1);

3

i n s e r t (value, roo t) i n t value; s t r u c t node *root ;
4.

i f (root = (s t r u c t node *) NULL) e x i t (1);
if (value = root -> value) r e t u r n (++(root -> h i t s)) ;
if (value < r o o t -> value) < /* down l e f t s ide */

if (root -> l e f t = (s t r u c t node *> NULL) <
root -> l e f t = (s t r u c t node *)malloc (s izeof (s t r u c t node)) ;
root -> l e f t -> value = value;
re turn (root -> l e f t -> h i t s = 1) ;

re turn i n s e r t (value , r o o t -> l e f t) ; /* recurse */
3
i f (value > r o o t -> value) < /* down r i g h t s i d e */

i f (root -> r i g h t = (s t r u c t node *) NULL) <
root -> r i g h t = (s t r u c t node *)malloc (sizeof (s t r u c t node)) ;
root -> r i g h t -> value = value;
re turn (root -> r i g h t -> h i t s = 1);

3
re turn i n s e r t (value, r o o t -> r i g h t) ; /* recurse */

r e t u r n (-1);
3

inorder (root) s t r u c t node *root ;
<

i f (roo t = (s t r u c t node *) NULL) r e tu rn ;
inorder (root -> l e f t) ;
p r i n t f ("%d: %d h i t s \n" , r o o t -> value, r o o t -> h i t s) ;
inorder (root -> r i g h t) ;

3
Figure C.4

Pointers in a CAF'C environment - Client Code

133

#Include cstdlo. h>
#Include "node. h"

postorder (root)
struct node *root;
<

If (root = (struct node *) NULL)

postorder (root -> left) ;
postorder (root -> right) ;
prlntf ("%d: %d hIts\n", root -> value, root -> hits) ;

return ;

1

preorder (root)
struct node *root;
<

If (root = (struct node *I NULL)

prlntf ("%d: %d hIts\n", root -> value, root -> hits) ;
preorder (root -> left) ;
preorder (root -> right) ;

return;

3
Figure C.5

Pointers in a CAPC environment - Server Code

134

APPENDIX D.

CLASP CONFIGURATION AND LOG FILES

Our prototype uses a static configuration table to assign server processors. The file

/usr/local/etc/claspd.config contains the configuration data. The file contains lines that

describe how much logging information to generate and addresses for servers of appropriate

architectures. Figure D. 1 shows a sample configuration file.

Our configurations usually store logging information in the files /usr/udm/claspd.log

and /usr/udm/claspd.prof. The claspd.log file contains high level information describing the

current host addresses for specific architectures and the starting and finishing times for server

processes. Figure D.2 shows a segment from this file.

Cluspd.prof provides more detailed information. This file records page traffic and call

behavior. At normal logging levels, the kernel stores summary data in this file. For each

client and server on the local host, the file contains the number of CAPC calls and returns

and the number of pages moved across the network. More detailed logging generates a line

for each CAPC call, CAPC return or page transfer. All lines are marked with the current

time and process identifier. A segment of this file is shown in figure D.3

135

I
1
1
I
1
R

I
I

1

I
8
I
8
I

n

n

configuration file for CLASP kernel.
The daemon reads this file at startup and whenver it receives
a SIGHUP signal.

prof iling level hos tname

logging (on I off 3 pathname
missing pathname leaves it unchanged.
must specify on/off field.

prof illng 2 brutus.cs.uiuc.edu
m3ging on /usr/adm/claspd.log

Syntax:

missing hostname defaults to localhost
missing level defaults to 2

server architecture hostname
architecture I s integer
hostname I s string
gotta specify both.

10 = M RBEl
server 10 crl.cs.uiuc.edu

-

20 = M 68020R
server 20 brutus.cs.uiuc.edu

-

Figure D.l
Sample Claspd Configuration File

/usr/local/etc/claspd.config

138

Frl Mar 27 11:04:15 1987: daemon 88: Re-lnltlallze server tables
Frl Mar 27 11:04:17 1987: daemon 88: Ox10 @ brutus.cs.uluc.edu
Frl Mar 27 11:04:19 1987: daemon 88: 0x20 @ brutus.cs.uluc.edu
Frl Mar 27 20:55:05 1987: server 1274: client at 192.17.238.2/1053
Frl Mar 27 20:55:19 1987: server 1274: exlt/slg O/ll.

Sun Mar 29 11:29:39 1987: server 3148: client at 192.17.238.2/1137
Sun Mar 29 11:30:11 1987: server 3148: exlt/slg O / l l .

user/sys 0.100000/6.960000 secs

user/sys 0.000000/0.960000 secs

Figure D.2
Sample claspd.log

1
II
8
I
1
n
I
I
I
3
8
I
1
8
8
1
I
II
I

137

037398[400001 pld 3147:
037398/400003 pld 3147:
037398/460002 pld 3147:
037398/520001 pld 3147:
037398/580000 pld 3147:
037398/640000 pld 3147:
037398/640001 pld 3147:
037398/700000 pld 3147:
037398/740001 pld 3147:
037398/760002 pld 3147:
037398/820000 pld 3147:
037398/860001 pld 3147:
037398/860002 pid 3147:
037398/920001 pld 3147:
037398/940000 pld 3147:
037398/980001 pld 3147:
037399/000000 pid 3147:
037399/040001 pld 3147:
037399/060001 ?id 3147:

call to server at Ox73f 8
pageout at OxeffcOOO
pageout at 0x20000
pageout at 0x28000
pageout at Ox2aOOO
call from server to 0x326~
pageln at 0x20000
pageln at 0x28000
return to server at 0x7448
pageout at 0x28000
pageout at 0x2~000
call from server to 0x326~
pageln at 0x28000
return to server at 0x7448
pageout at 0x28000
call from server to 0x326~
pageln at 0x28000
return to server at 0x7448
pageout at 0x20000

...
037409/420000 pld 3147: return from server to Ox21f8
037411/020000 pld 3147: rl: CAPC calls/returns: local 0/0 network 2/9
037411/020001 pld 3147: rl: CAPC pageins 11, pageouts 15

Figure D.3
Sample claspd.log

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

138

REFERENCES

"IEEE Floating Point Standard #754", IEEE.

XNS Courier under UNIX. In: U N M Programmer's Manual, 4.3 Berkeley

"Courier: The Remote Procedure Call Protocol", Xerox System Integration Stan-

MC68000 16-bit Microprocessor User's Manual. Prentice-Hall, Englewood

"Pyramid Processor Architecture Manual (Preliminary)", Pyramid Technology

MC68020 32-bit Microprocessor User's Manual. Prentice-Hall, Englewood

"CONVEX Architecture Handbook", Convex Computer Corporation, 1985.

"DDN Protocol Handbook", NIC 50004, SRI International, 1985.

"DOMAIN Architecture: A Technical Overview", Apollo Computer Inc., 1985.

"DOMAIN Series 3000 Technical Reference Hardware Architecture Handbook",

Software Distribution, Virtual VAX-11 Version.

dard 038112 Xerox Corporation, Stamford, Connecticut, 1981.

Cliffs, NJ, 1982.

Corporation, 1983.

Cliffs, NJ, 1984.

Apollo Computer Inc., 1985.

"FX/Series Architecture Manual", Alliant Computer Systems Corporation, 1985.

"Balance Technical Summary", Sequent Computer Systems, Inc., 1986.

"External Data Representation Protocol Specification", Sun Microsystems, Inc.,

"Multimax Technical Summary", Encore Computer Corporation, 1986.

"Network File System Protocol Specification", Sun Microsystems, Inc., 1986, p.

"Remote Procedure Call Programming Guide", Sun Microsystems, Inc., 1986, p.

"Remote Procedure Call Protocol Specification", Sun Microsystems, Inc., 1986, p.

The Remote Virtual Disk System. In: Academic Information Systems 4.2 for

"RPCL, A Remote Procedure Call Language", Sun Mcrosystems, Inc., 1986.

"System Administration for the Sun Workstation", Sun Microsystems, Inc., 1986.

"Writing Device Drivers for the Sun Workstation", Sun Microsystems, Inc., 1986.

1986, p. 61.

32.

69.

26.

the IBM RT PC., 1986, pp. 185-234.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

139

Accetta, Mike, Robert Baron, William Bolosky, David Golub, Richard Rashid,
Avadis Tevanian and Michael Young. Mach: A New Kernel Foundation for
U N l x development. USENIX Conference Proceedings (June 1986) pp. 93-
111.

Almes, Guy T., Andrew P. Black, Edward D. Lazowska and Jerre D. Noe. "The
Eden System: A Technical Review", Technical Report 83-10-05, Department
of Computer Science, University of Washington, Seattle, Washington 98195,
1983, p. 25.

Batson, A. P. Program behavior at the symbolic level. Computer (November
1976) vol. 9, no. 11, pp. 21-28.

Batson, A. P. and W. Madison. Measurements of major locality phases in sym-
bolic reference strings. Proc. Int. Symp. Comput. Performance Model-
ing, Measurement, and Evaluation (March 1976) pp. 75-84.

Brown, Mark R., Karen N. Kolling and Edward A. Taft. The Alpine File System.
ACM Transactions on Computer Systems (November 1985) vol. 3, no. 4,

Brownbridge, D. R., L. F. Marshall and B. Randell. The Newcastle Connection,
or UNIXes of the World Unite!. Software - Practice and Experience
(1982) pp. 1147-1162.

Campbell, Roy H., Gary M. Johnston and Vince F. Russo. "CHOICES: a Class
Hierarchical Open Interface for Custom Embedded Systems", unpublished,
1987.

pp. 261-293.

Cheriton, David R. and Michael Stumm. "The Multi-Satellite Star: Structuring
Parallel Computations for a Workstation Cluster", Stanford University, p. 31.

Cheriton, David R. and Willy Zwaenepoel. "The Distributed V Kernel and its
Performance for Diskless Workstations", Stanford University, 1983.

Denning, Peter J. The Working Set Model for Program Behavior. Communica-
tions of the ACM (May 1968) vol. 11, no. 5, pp. 323-333.

- . Working Sets Past and Present. IEEE Transactions on Software
Engineering (January 1980) vol. SE-6, no. 1, pp. 64-84.

Denning, Peter J. and Kevin C. Kahn. A study of program locality and lifetime
functions. Proceedings of the 5th ACM Symposium on Operating Sys-
t e m Principles (November 1975) pp. 207-216.

Devarakonda, M. V., R. E. McGrath, R. H. Campbell and W. J. Kubitz. Net-
working a Large Number of Workstations Using Uniz United. Proc. IEEE
Computer Workstations Conference (November 1985).

Machine Stack Cache. SIGARCH (March 1982) vol. 10, no. 2, pp. 48-56.
Ditzel, David R. and H. R. McLellan. Register Allocation for Free: The C

Dongarra, J . , C. Moler, J. Bunch and G. Stewart. "LINPACK Users Guide",
SIAM, 1979.

140

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Donnelly, Jeffrey M. "Porting the Newcastle Connection to 4.2 BSD", University

Ezzat, A. K. "Decentralized Control of Distributed Processing Systems", Ph.D.

of Illinois, Urbana, 1985, p. 37.

dissertation, University of New Hampshire, Durham, NH, 1982.

Ezzat, Ahmed K., R. Daniel Bergeron and John L. Pokoski. Task Allocation
Heuristics for Distributed Computing Systems. The 6th International
Conference on Distributed Computing Systems (May 1986) pp. 337-
346.

Feldman, S. I. "Make - A Program for Maintaining Computer Programs", Bell
Laboratories, 1978.

Fitzgerald, Robert and Richard F. Rashid. The Integration of Virtual Memory
Management and Intcrprocess Communcation in Accent. ACM Transactions
on Computer Systems (May 1986) vol. 4, no. 2, pp. 147-177.

Gajski, Daniel, David Kuck, Duncan Lawrie and Ahmed Sameh. "Construction of
a Large Scale Multiprocessor", Department of Computer Science Technical
Report #1123, University of Illinois at Urbana-Champaign, Urbana, Illinois,
1983, p. 36.

Gancarz, Michael. Uwm: A User Interface for X Windows. Proceedings of the
Summer '86 Usenix Conference pp. 429-440.

USENIX Technical Conference (January 15, 1986) pp. 89-97.

Protocol Version 10. (November 16, 1986).

Hansen, Per Brinch. Distributed Processes: A Concurrent Programming Concept.
Communications of the ACM (November 1978) vol. 21, no. 11, pp. 934-
941.

Henry, G. Glenn. IBM RT PC Architecture and Design Decisions. In: RT Per-
sonal Compuer Technology, Frank Waters, ed., 1986, pp. 2-5.

Hester, P. D., Richard 0. Simpson and Albert Chang. The IBM RT PC ROMP
and Memory Management Unit Architecture. In: RT Personal Computer
Technology, Frank Waters, ed., 1986, pp. 48-56.

Hopkins, M. E. Compiling for the RT P C ROMP. In: RT Personal Computer
Technology, Frank Waters, ed., 1986, pp. 76-82.

Horton, Kurt H. ''Multicomputer Interconnection Using Work Parallel Shift
Register Ring Networks", PhD. Thesis, Department of Computer Science
Technical Report #1164, University of Illinois at Urbana-Champaign,
Urbana, Illinois, 1984, p. 79.

Jamp, R. and J. R. Spirn. ''VMIN based determination of program macro-
behavior", Department of Computer Science, Pennsylvania State University,
University Park, 1979.

Gettys, James. Problems Implementing Window Systems in Unix. 1986 Winter

Gettys, Jim, Ron Newman and Tony Della Fera. Xlib - C Language X Interface:

1
I
1
I
I
I
E
I
I
I
I
u
i
R
I
I
I
8
I

~

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

141

Johnson, S. C. A Tour Through the Portable C Compiler. In: UNM
Programmer's Manual, Seventh Edition, Vol. 2A. Bell Telephone
Laboratories Incorporated, Murray Hill, New Jersey, p. 15.

Kahn, K. C. "Program behavior and load dependent system performance", Ph.D.
dissertation, Dept. of Computer Science, Purdue University, West Lafayette,
IN, 1976.

Kevorkian, D. E. (ed.). System V Interface Definition. AT&T, 1985.

Kolstad, Robert Bruce. "Distributed Path Pascal: A Language for Programming
Coupled Systems", PhD. Thesis, Department of Computer Science Technical
Report #1136, University of Illinois a t Urbana-Champaign, Urbana, Illinois,
1983, p. 75.

Kolstad, Rob. private communications, 1986.

Kronenberg, Nancy P., Henry M. Levy and William D. Strecker. VAXclusters: A
Closely-Coupled Distributed System. ACM Transactions on Computer
Systems (May 1986) vol. 4, no. 2, pp. 130-146.

Kuck, Sharon M., David A. McNabb, Stephen V. Rice and Yehoshua Sagiv. "The
PARAFRASE Database User's Manual", Department of Computer Science
Technical Report #1046, University of Illinois at Urbana-Champaign,
Urbana, Illinois, 1980, p. 30.

Lauer, Hugh C. and Roger M. Needham. On the Duulity of Operating System
Structures. In: Operating Systerjns: Theory and Practice, D. Lanciaux, .
ed. North Holland Publishing Company, 1979, pp. 371-384.

Thesis, Yale University, 1986.
Li, Kai. "Shared Virtual Memory on Lossely-coupled Multiprocessors", Ph.D.

Li, Kai and Paul Hudak. Memory Coherence in Shared Virtual Memory Systems.
Proceedings of the Fifth Annaul ACM Syposium on Principles of Dis-
tributed Computing (August 1986) pp. 229-239.

Lions, J. "Notes on the UNlX Operating System", University of New South
Wales, 1976.

Madison, A. W. and A. P. Batson. Characteristics of program localities. Com-
munications of the ACM (May 1976) vol. 19, pp. 285-294.

Metcalfe, Robert M. and David R. Boggs. Ethernet: Distributed Packet Switching
for Local Computer Networks. Communications of the ACM (July 1976)
vol. 19, no. 7.

Mitchell, James G. and Jeremy Dion. A Comparison of Two Network-Based File
Servers. Communications of the ACM (April 1982) vol. 25, no. 4, pp. 233-
245.

Nelson, Bruce Jay. "Remote Procedure Call", Carnegie-Mellon University, 1981,
p. 201.

O'Quin, J. C. The IBM R T P C Subroutine Linkage Convention In: RT Personal

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

142

Computer Technology, Frank Waters, ed., 1986, pp. 131-133.

Ousterhout, John K., Donald A. Scelza and Pradeep S. Sindhu. Medusa: An
Experiment in Distributed Operating System Structure. Proceedings of the
Seventh ACM Symposium on Operating Systems Principles
(December 1979) pp. 115-116.

- . Medusa: An Ezperiment in Distributed Operating System Structure. Com-
munications of the ACM (February 1980) vol. 23, no. 2, pp. 92-105.

Patterson, David A. Reduced Instruction Set Computers. Communications of
the ACM (January 1985) vol. 28, no. 1, pp. 8-22.

Peterson, James L. Petri Nets. ACM Computing Surveys (September 1977)
vol. 9, no. 3, pp. 223-252.

Popek, Gerald J., Bruce J. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin
and G. Thiel. LOCUS: A Network Transparent, High Reliability Distributed
System. Proceedings of the Eighth ACM Symposium on Operating
Systems Principles, Pacific Grove, California (December 1981) pp. 169-
177.

Postei, Jon B. "Transmission Control Protocol - DARPA Internet Program Pro-
tocol Specification", RFC 793, USC/Information Sciences Institute, 1981, p.
85.

Rashid, Richard F. Threads of a New System. UNM Review (August 1986) vol.
4, no. 8, pp. 37-49.

Rashid, Richard F. and George G. Robertson. Accent: A communication oriented
network operating system kernel. ACM SIGOPS (December 1981) vol. 15, no.
5, pp. 64-75.

Rogers, Gregory Scott. "UIGKS: A Distributed Graphics System", Department of
Computer Science Technical Report #1253, University of Illinois a t Urbana-
Champaign, Urbana, Illinois, 1986, p. 47.

RUSSO, Vincent Frank. "LINK: A Kernel Based Distributed U N K , University of
Illinois, Urbana, 1987.

Spector, Alfred Z. "Multiprocessing Architectures for Local Computer Networks",
Stanford University, 1981, p. 116.

Stone, Harold S. and Shahid H. Bokhari. Control of Distributed Processes. IEEE
Computer (July 1978) pp. 97-106.

Swinehart, Daniel C., Polle T. Zellweger, Richard J. Beach and Robert B. Hag-
mann. A Structural View of the Cedar Programming Environment. ACM
Transactions on Programming Languages and Systems (October 1986)
vol. 8, no. 4, pp. 419-490.

Tanenbaum, Andrew S. and Sape J. Mullender. An Overview of the Amoeba Dis-
tributed Operating System. ACM Operating Systems Review (July 1981)
vol. 15, no. 3, pp. 51-64.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

143

Taylor, Bradley and David Goldberg. Secure Networking in the Sun Environment.
Proceedings of the Summer 1986 USENlX Technical Conference
(June 1986) pp. 28-37.

Theimer, Marvin M., Keith A. Lantz and David R. Cheriton. Preemptable
Remote Ezecution Facilities for the V-System. ACM Operating Systems
Review (December 1985) vol. 19, no. 5, pp. 2-12.

Walker, Bruce J., Gerald J. Popek and R. English. The LOCUS Distributed
Operating System. SIGOPS (October 1983) vol. 17-5, pp. 49-70.

Walsh, Dan, Bob Lyon, Gary Sager, J. M. Chang, D. Goldberg, S. Kleiman, T.
Lyon, R. Sandberg and P. Weiss. Overview of the Sun Network File System.
USENIX Conference Proceedings (January 1985) pp. 117-124.

Watson, Tom. private communications, 1987.

Welch, Terry A. A Technique for High Performance Data Compression IEEE
Computer (June 1984) vol. 17, no. 6, pp. 8-19.

Wulf, William A. and C. G. Bell. C.mmp - A multi-mini-processor. Proc.
M I P S 1972, FJCC (December 1972) vol. 41, pp. 765-777.

Wulf, William A., E. Cohen, WilIiam M. Corwin, Anita K. Jones, R. Levin, C.
Pierson and F. J. Pollack. HYDRA: The Kernal of a Multiprocessor Operating
System. Communications of the ACM (June 1974) vol. 17, no. 6, pp. 337-
345.

Wulf, William A., Roy Levin and Samuel P. Harbison,. HYDRA/C.mmp.,
1981.

Wulf, William A., R. Levin and C. Pierson. Overview of the Hydra Operating Sys-
tem Development. Proceedings of the Fifth Symposium on Operating
Systems Principles, University of Texas at Austin (November 1975) pp.
122-131.

144

VITA

Raymond Brooke Essick IV was born in Highland Park, Illinois on May 26, 1959. He

entered the University of Illinois at Urbana-Champaign in August 1977 and received a B.S. in

computer science in January 1981. During his undergraduate career, Ray was a member of

the University’s swimming team and earned varsity letters for each of his four years on the

team.

Ray began his graduate studies a t the University of Illinois at Urbana-Champaign in

January 1981. In May €983, Ray received the M.S. degree in Computer Science. He received

his Ph.D. in Computer Science from the University of Illinois in May 1987. During his years

in graduate school, Ray took an active part in the support of the Computer Science

Department’s UMX systems.

U~LIOCRAPHIC DATA II- Repon No. [a 13. Recipient's Accession No.

Raymond Brooke Essick IV . Perfamini Orianization Naw and Address

.

iHttT I UIUCDCS-R-87-1340 I I . Tule and Subt d e 15. Repon Date

No* R-87-1340
10. Project/Task/Work Unit No.

THE CROSS-ARCHITECTURE PROCEDURE CALL

2 Sponsaing Organization Name and Address

May 21, 1987
6.

1% Type of Repon & Period
Covered

I
18. Performing Or8anization Rep.

18. Availability Statement

unlimited
19.. Security Class (This

20. S e c u r i m i s 22. Price

21. No . of Pages

UN 15 2
Repon)

- -
Department of Computer Science
1304 W. Springfield
Urbana, IL 61801 NASA NSG 1471

NASA Langley Research Center
Hampton, VA 23665

I Ph.D. Thesis
11.

I

IS. Supplementary Noces

16.Abstractr This thesis introduces the Cross-Architecture Procedure Call. Cross-
Architecture Procedure Calls (or CAPCS) combine virtual memory, high speed networking,
and compatible data representations to accelerate an application's computations without
modifying its code. CAPCs allow workstations to use, on a demand basis, faster or more
expensive processors as compute servers so that each of an applications functions can
be executed by the most appropriate processor.
The CAPC process executes in a single virtual address space shared by several CPUs.
structions for each CPU are stored in different regions of the virtual address space.
Routines are compiled for the processor that can most effectively execute them.
do not require special calling sequences to transfer control between processors. In-
stead, virtual memory page protections are used to implement transfers between processor
Routines on all processors share access to global variables, including pointer data type
A modified operating system uses demand-paging to control access to these shared pages.
Because the CPUs share the same internal data representation, pages can be moved be-
tween processors without any conversion operations.
This thesis describes the CAPC construct, a sufficient level of similarity between
processors architectures to use CAPCs, and a CAPC implementation based on the SUN
3.0 Operating System.

In-

CAPCs

17. Key Words and Document Analysis. 170. Descriptors

transparent compute servers
remote procedure call
loosely coupled virtual memory
distributed processing
distributed sequential process
17h ldentif iers/Open-Ended Terms

17c COSATI Field/Group

Page
UNCLASSIFIED I

'ORM NTIS-30 (10.101 U I C O M M - O C 40329- P 7
~~

